AIM: To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom).
METHODS: This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9.
RESULTS: HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 (Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 (Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 (Z = -5.32) at the basal ganglia and 8.79 versus 8.06 (Z = -4.93) at the middle cerebellar peduncles. All results were significant with P-value < 0.01.
CONCLUSIONS: Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former. However, HUs of the images produced by CereTom do fulfil the recommendation of the ACR.
METHODS: A retrospective analysis of 14 cases of children who were admitted to the Pediatric Neurosurgical Unit of Hospital Kuala Lumpur after sustaining head injuries caused by fan blades between January 2000 and December 2002 was performed.
RESULTS: The causes of fan-blade head injury included jumping on the upper bunk of a bunk-bed, climbing on a ladder, climbing up onto a table, and being lifted by an adult. Thirteen patients were injured by ceiling fans and one by falling onto an uncovered table fan. School-aged boys were the predominant victims. Mean patient age was 7.9 years (range, 1.0-12.2 years). There was a twin peak incidence of when the accidents occurred: just before lunch in the afternoon and bedtime at night. The types of injury were scalp lacerations, compound depressed fractures and multiple intracranial haemorrhages. Two patients had the complication of wound infection, and one of these patients developed cerebral spinal fluid leak. One patient died from severe head injuries.
CONCLUSION: Safety awareness among parents and caretakers are important as fan-blade head injury among children is preventable.