Spray dryer had long been used to dry liquid materials and produce dry crystalline products. However, the drying of the bittern to produce quality salt crystals has not been widely published. Therefore, the purpose of this study was to examine the effect of drying conditions of the bittern using a spray dryer to produce salt with a high natrium chloride (NaCl) content. Drying was carried out in the hot air temperature (105-125 °C), drying air flow rate (25-45 ml/min), feed flow rate (20-30 ml/min), and concentration of maltodextrin (10-30%). The parameters were observed water content, NaCl content, yield, and mean particle diameter size (MPDS). The results showed that the inlet air temperature of 125 °C can significantly reduce the water content faster and produce higher NaCl levels than the inlet air temperature of 105 °C. The salt crystals produced at higher maltodextrin concentrations have lower water content and high NaCl content. The best-operating conditions are at a hot air temperature of 125 °C, a drying airflow rate of 45 m/s, and a maltodextrin concentration of 25% because it produces salt crystals with high NaCl content. Overall, these results indicate that the bittern can be dried using a spray dryer with potential NaCl content as a raw material for the pharmaceutical industry.
A multi-objective optimization of in situ sol-gel process was conducted in preparing oil palm fiber-reinforced polypropylene (OPF-PP) composite for an enhancement of mechanical and thermal properties. Tetraethyl orthosilicate (TEOS) and butylamine were used as precursors and catalysts for the sol-gel process. The face-centered central composite design (FCCD) experiments coupled with response surface methodology (RSM) has been utilized to optimize in situ silica sol-gel process. The optimization process showed that the drying time after the in-situ silica sol-gel process was the most influential factor on silica content, while the molar ratio of TEOS to water gave the most significant effect on silica residue. The maximum silica content of 34.1% and the silica residue of 35.9% were achieved under optimum conditions of 21.3 h soaking time, 50 min drying time, pH value of 9.26, and 1:4 molar ratio of TEOS to water. The untreated oil palm fiber (OPF) and silica sol-gel modified OPF (SiO2-OPF) were used as the reinforcing fibers, with PP as a matrix and maleic anhydride grafted polypropylene (MAgPP) as a compatibilizer for the fiber-reinforced PP matrix (SiO2-OPF-PP-MAgPP) composites preparation. The mechanical and thermal properties of OPF-PP, SiO2-OPF-PP, SiO2-OPF-PP-MAgPP composites, and pure PP were determined. It was found that the OPF-S-PP-MAgPP composite had the highest toughness and stiffness with values of tensile strength, Young's modulus, and elongation at break of 30.9 MPa, 881.8 MPa, and 15.1%, respectively. The thermal properties analyses revealed that the OPF-S-PP-MAgPP exhibited the highest thermally stable inflection point at 477 °C as compared to pure PP and other composites formulations. The finding of the present study showed that the SiO2-OPF had the potential to use as a reinforcing agent to enhance the thermal-mechanical properties of the composites.
Polymeric membranes offer straightforward modification methods that make industry scaling affordable and easy; however, these materials are hydrophobic, prone to fouling, and vulnerable to extreme operating conditions. Various attempts were made in this study to fix the challenges in using polymeric membranes and create mixed-matrix membrane (MMMs) with improved properties and hydrophilicity by adding titanium dioxide (TiO2) and pore-forming agents to hydrophobic polyvinylidene fluoride (PVDF). The PVDF mixed-matrix ultrafiltration membranes in this study were made using the non-solvent phase inversion approach which is a simple and effective method for increasing the hydrophilic nature of membranes. Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) as pore-forming chemicals were created. Pure water flux, BSA flux, and BSA rejection were calculated to evaluate the mixed-matrix membrane's efficiency. Bovine serum albumin (BSA) solution was employed in this study to examine the protein rejection ability. Increases in hydrophilicity, viscosity, and flux in pure water and BSA solution were achieved using PVP and PEG additives. The PVDF membrane's hydrophilicity was raised with the addition of TiO2, showing an increased contact angle to 71°. The results show that the PVDF-PVP-TiO2 membrane achieved its optimum water flux of 97 L/(m2h) while the PVDF-PEG-TiO2 membrane rejected BSA at a rate greater than 97%. The findings demonstrate that use of a support or additive improved filtration performance compared to a pristine polymeric membrane by increasing its hydrophilicity.
Understanding the tanker driver hazard awareness on chemical exposure is important to ensure that they are fortified with the appropriate information regarding the risk of their occupation. This present study was conducted to determine the awareness of the petrol tanker driver on the chemical exposure during transportation petroleum product. The assessment on hazardous awareness of the petrol tank driver was conducted through questionnaire survey. Wherein, the questionnaire was designed with considering the variables of age of the driver, working experience, working hours in a day and knowledge on chemical hazard presence in the petroleum oil. A reliability test of Cronbach's Alpha was performed to validate the questionnaire and the Chi-Square test was conducted to determine the correlation among the studied variables. The findings of the present study revealed that the drivers who are frequently come into direct contact with petrol cannot identify the spillage had occurred during working. The study identified that there is an urgency to conduct training on safe handling of petroleum oil in order to eliminate the risk of chemical hazards exposure to the tanker driver.
In this study, acrylonitrile butadiene styrene (ABS)/talc/graphene oxide/SEBS-g-MAH (ABS/Talc/GO/SEBS-g-MAH) and acrylonitrile butadiene styrene/graphene oxide/SEBS-g-MAH (ABS/GO/SEBS-g-MAH) composites were isolated with varying graphene oxide (0.5 to 2.0 phr) as a filler and SEBS-g-MAH as a compatibilizer (4 to 8 phr), with an ABS:talc ratio of 90:10 by percentage. The influences of graphene oxide and SEBS-g-MAH loading in ABS/talc composites were determined on the mechanical and thermal properties of the composites. It was found that the incorporation of talc reduces the stiffness of composites. The analyses of mechanical and thermal properties of composites revealed that the inclusion of graphene oxide as a filler and SEBS-g-MAH as a compatibilizer in the ABS polymer matrix significantly improved the mechanical and thermal properties. ABS/talc was prepared through melt mixing to study the fusion characteristic. The mechanical properties showed an increase of 30%, 15%, and 90% in tensile strength (TS), flexural strength (FS), and flexural modulus (FM), respectively. The impact strength (IS) resulted in comparable properties to ABS, and it was better than the ABS/talc composite due to the influence of talc in the composite that stiffens and reduces the extensibility of plastic. The incorporation of GO and SEBS-g-MA also shows a relatively higher thermal stability in both composites with and without talc. The finding of the present study reveals that the graphene oxide and SEBS-g-MAH could be utilized as a filler and a compatibilizer in ABS/talc composites to enhance the thermo-mechanical stability because of the superior interfacial adhesion between the matrix and filler.
Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm2 scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.