The treatment of successive skin wounds necessitates meticulous medical procedures. In the care and treatment of skin wounds, hydrogels produced from natural polymers with controlled drug release play a crucial role. Arabinoxylan is a well-known and widely available biological macromolecule. We produced various formulations of blended composite hydrogels (BCHs) from arabinoxylan (ARX), carrageenan (CG), and reduced graphene oxide (rGO) using and cross-linked them with an optimal amount of tetraethyl orthosilicate (TEOS). The structural, morphological, and mechanical behavior of the BCHs samples were determined using Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), mechanical testing, and wetting, respectively. The swelling and degradation assays were performed in phosphate-buffered saline (PBS) solution and aqueous media. Maximum swelling was observed at pH 7 and the least swelling in basic pH regions. All composite hydrogels were found to be hemocompatible. In vitro, silver sulfadiazine release profile in PBS solution was analyzed via the Franz diffusion method, and maximum drug release (87.9%) was observed in 48 h. The drug release kinetics was studied against different mathematical models (zero-order, first-order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, and Baker-Lonsdale models) and compared their regression coefficient (R2) values. It was observed that drug release follows the Baker-Lonsdale model, as it has the highest value (0.989) of R2. Hence, the obtained results indicated that, due to optimized swelling, wetting, and degradation, the blended composite hydrogel BCH-3 could be an essential wound dressing biomaterial for sustained drug release for skin wound care and treatment.
The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young's modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.