Monolluma quadrangula (Forssk.) Plowes is used in Saudi traditional medicines to treat gastric ulcers. The hydroalcoholic extract of M. quadrangula (MHAE) was used in an in vivo model to investigate its gastroprotective effects against ethanol-induced acute gastric lesions in rats. Five groups of Sprague Dawley rats were used. The first group was treated with 10% Tween 20 as a control. The other four groups included rats treated with absolute ethanol (5 mL/kg) to induce an ulcer, rats treated with 20 mg/kg omeprazole as a reference drug, and rats treated with 150 or 300 mg/kg MHAE. One hour later, the rats were administered absolute ethanol (5 mL/kg) orally. Animals fed with MHAE exhibited a significantly increased pH, gastric wall mucus, and flattening of the gastric mucosa, as well as a decreased area of gastric mucosal damage. Histology confirmed the results; extensive destruction of the gastric mucosa was observed in the ulcer control group, and the lesions penetrated deep into the gastric mucosa with leukocyte infiltration of the submucosal layer and edema. However, gastric protection was observed in the rats pre-fed with plant extracts. Periodic acid-Schiff staining of the gastric wall revealed a remarkably intensive uptake of magenta color in the experimental rats pretreated with MHAE compared to the ulcer control group. Immunohistochemistry staining revealed an upregulation of the Hsp70 protein and a downregulation of the Bax protein in rats pretreated with MHAE compared with the control rats. Gastric homogenate showed significantly increased catalase and superoxide dismutase, and the level of malondialdehyde (MDA) was reduced in the rats pretreated with MHAE compared to the control group. In conclusion, MHAE exhibited a gastroprotective effect against ethanol-induced gastric mucosal injury in rats. The mechanism of this gastroprotection included an increase in pH and gastric wall mucus, an increase in endogenous enzymes, and a decrease in the level of MDA. Furthermore, protection was given through the upregulation of Hsp70 and the downregulation of Bax proteins.
Phytosterols are naturally occurring compounds in plants, structurally similar to cholesterol. The human diet is quite abundant in sitosterol and campesterol. Phytosterols are known to have various bioactive properties including reducing intestinal cholesterol absorption which alleviates blood LDL-cholesterol and cardiovascular problems. It is indicated that phytosterol rich diets may reduce cancer risk by 20%. Phytosterols may also affect host systems, enabling antitumor responses by improving immune response recognition of cancer, affecting the hormone dependent endocrine tumor growth, and by sterol biosynthesis modulation. Moreover, phytosterols have also exhibited properties that directly inhibit tumor growth, including reduced cell cycle progression, apoptosis induction, and tumor metastasis inhibition. The objective of this review is to summarize the current knowledge on occurrences, chemistry, pharmacokinetics and potential anticancer properties of phytosterols in vitro and in vivo. In conclusion, anticancer effects of phytosterols have strongly been suggested and support their dietary inclusion to prevent and treat cancers.
Colorectal cancer (CRC) is ranked as the fourth most lethal and commonly diagnosed cancer in the world according to the National Cancer Institute's latest report. Treatment methods for CRC are constantly being studied for advancement, which leads for more clinically effective cancer curing strategy. Patients with prolonged chronic inflammation caused by ulcerative colitis or similar inflammatory bowel disease are known to have high risks of developing CRC. But at a molecular level, oxidative stress due to reactive oxygen species (ROS) is an important trigger for cancer. Hence, in recent years, exogenous antioxidants have been immensely experimented in pre-clinical and clinical trials, considering it as a potential cure for CRC. Significantly, potential antioxidant compounds especially derivatives of medicinal plants have received great attention in the current research trend for CRC treatment. Though antioxidant compounds seem to have beneficial properties for the treatment of CRC, there are also limitations for pure compounds to be tested clinically. Therefore, this review aims to delineate the pharmacological awareness among researchers on using antioxidant compounds to treat CRC and the measures taken to prove the effectiveness of such compounds as impending drug candidates for CRC treatment in modern medication.