Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.
The recent increase in the number of videos available in cyberspace is due to the availability of multimedia devices, highly developed communication technologies, and low-cost storage devices. These videos are simply stored in databases through text annotation. Content-based video browsing and retrieval are inefficient due to the method used to store videos in databases. Video databases are large in size and contain voluminous information, and these characteristics emphasize the need for automated video structure analyses. Shot boundary detection (SBD) is considered a substantial process of video browsing and retrieval. SBD aims to detect transition and their boundaries between consecutive shots; hence, shots with rich information are used in the content-based video indexing and retrieval. This paper presents a review of an extensive set for SBD approaches and their development. The advantages and disadvantages of each approach are comprehensively explored. The developed algorithms are discussed, and challenges and recommendations are presented.
One of the most dangerous kinds of attacks affecting computers is a distributed denial of services (DDoS) attack. The main goal of this attack is to bring the targeted machine down and make their services unavailable to legal users. This can be accomplished mainly by directing many machines to send a very large number of packets toward the specified machine to consume its resources and stop it from working. We implemented a method using Java based on entropy and sequential probabilities ratio test (ESPRT) methods to identify malicious flows and their switch interfaces that aid them in passing through. Entropy (E) is the first technique, and the sequential probabilities ratio test (SPRT) is the second technique. The entropy method alone compares its results with a certain threshold in order to make a decision. The accuracy and F-scores for entropy results thus changed when the threshold values changed. Using both entropy and SPRT removed the uncertainty associated with the entropy threshold. The false positive rate was also reduced when combining both techniques. Entropy-based detection methods divide incoming traffic into groups of traffic that have the same size. The size of these groups is determined by a parameter called window size. The Defense Advanced Research Projects Agency (DARPA) 1998, DARPA2000, and Canadian Institute for Cybersecurity (CIC-DDoS2019) databases were used to evaluate the implementation of this method. The metric of a confusion matrix was used to compare the ESPRT results with the results of other methods. The accuracy and f-scores for the DARPA 1998 dataset were 0.995 and 0.997, respectively, for the ESPRT method when the window size was set at 50 and 75 packets. The detection rate of ESPRT for the same dataset was 0.995 when the window size was set to 10 packets. The average accuracy for the DARPA 2000 dataset for ESPRT was 0.905, and the detection rate was 0.929. Finally, ESPRT was scalable to a multiple domain topology application.