METHODS: We assessed sCD26/DPP-IV levels, active GLP-1 levels, body mass index (BMI), glucose, insulin, A1c, glucose homeostasis indices, and lipid profiles in 549 Malaysian subjects (including 257 T2DM patients with MetS, 57 T2DM patients without MetS, 71 non-diabetics with MetS, and 164 control subjects without diabetes or metabolic syndrome).
RESULTS: Fasting serum levels of sCD26/DPP-IV were significantly higher in T2DM patients with and without MetS than in normal subjects. Likewise, sCD26/DPP-IV levels were significantly higher in patients with T2DM and MetS than in non-diabetic patients with MetS. However, active GLP-1 levels were significantly lower in T2DM patients both with and without MetS than in normal subjects. In T2DM subjects, sCD26/DPP-IV levels were associated with significantly higher A1c levels, but were significantly lower in patients using monotherapy with metformin. In addition, no significant differences in sCD26/DPP-IV levels were found between diabetic subjects with and without MetS. Furthermore, sCD26/DPP-IV levels were negatively correlated with active GLP-1 levels in T2DM patients both with and without MetS. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-cholesterol (LDL-c) levels.
CONCLUSION: Serum sCD26/DPP-IV levels increased in T2DM subjects with and without MetS. Active GLP-1 levels decreased in T2DM patients both with and without MetS. In addition, sCD26/DPP-IV levels were associated with Alc levels and negatively correlated with active GLP-1 levels. Moreover, metformin monotherapy was associated with reduced sCD26/DPP-IV levels. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-c.
METHOD: Ten DPP4 SNPs were genotyped by TaqMan genotyping assays in 314 subjects with T2DM and 235 controls. Of these, 71 metabolic syndrome (MetS) subjects were excluded from subsequent analysis. The odds ratios (ORs) and their 95% confidence interval (CIs) were calculated using multiple logistic regression for the association between the SNPs of DPP4 and T2DM. In addition, the serum levels of sDPP-IV were investigated to evaluate the association of the SNPs of DPP4 with the sDPP-IV levels.
RESULTS: Dominant, recessive, and additive genetic models were employed to test the association of DPP4 polymorphisms with T2DM, after adjusting for age, race, gender and BMI. The rs12617656 was associated with T2DM in Malaysian subjects in the recessive genetic model (OR = 1.98, p = 0.006), dominant model (OR = 1.95, p = 0.008), and additive model (OR = 1.63, p = 0.001). This association was more pronounced among Malaysian Indians, recessive (OR = 3.21, p = 0.019), dominant OR = 3.72, p = 0.003) and additive model (OR = 2.29, p = 0.0009). The additive genetic model showed that DPP4 rs4664443 and rs7633162 polymorphisms were associated with T2DM (OR = 1.53, p = 0.039), and (OR = 1.42, p = 0.020), respectively. In addition, the rs4664443 G>A polymorphism was associated with increased sDPP-IV levels (p = 0.042) in T2DM subjects.
CONCLUSIONS: DPP4 polymorphisms were associated with T2DM in Malaysian subjects, and linked to variations in sDPP-IV levels. In addition, these associations were more pronounced among Malaysian Indian subjects.
METHODS: The study involved 235 Malaysian subjects who were randomly selected (66 normal weight subjects, 97 overweight, 59 obese subjects, and 13 subjects who were underweight). Serum sDPP4 and active GLP-1 levels were examined by enzyme-linked immunosorbent assay (ELISA). Also, body mass index kg/m(2) (BMI), lipid profiles, insulin and glucose levels were evaluated. Insulin resistance (IR) was estimated via the homeostasis model assessment for insulin resistance (HOMA-IR).
RESULTS: Serum sDPP4 levels were significantly higher in obese subjects compared to normal weight subjects (p=0.034), whereas serum levels of active GLP-1 were lower (p=0.021). In obese subjects, sDPP4 levels correlated negatively with active GLP-1 levels (r(2)=-0.326, p=0.015). Furthermore, linear regression showed that sDPP4 levels were positively associated with insulin resistance (B=82.28, p=0.023) in obese subjects.
CONCLUSION: Elevated serum sDPP4 levels and reduced GLP-1 levels were observed in obese subjects. In addition, sDPP4 levels correlated negatively with active GLP-1 levels but was positively associated with insulin resistance. This finding provides evidence that sDPP4 and GLP-1 may play an important role in the pathogenesis of obesity, suggesting that sDPP4 may be valuable as an early marker for the augmented risk of obesity and insulin resistance.
METHODS: The single nucleotide polymorphisms (SNPs) of PTPRD (rs649891 and rs17584499) and SRR (rs4523957, rs391300, and rs8081273) were genotyped in 397 T2D and 285 normal Malaysian Indian subjects.
RESULTS: The homozygous dominant genotype of rs17584499 is frequent in diabetic patients (56.5%) compared to normal subjects (47.3%). In contrast, the homozygous recessive genotype of rs8081273 is more frequent among normal subjects (12.5%) than diabetic patients (5.6%). The dominant genetic model showed that PTPRD rs17584499 (CC) is a risk factor for T2D (OR = 1.42, P = 0.029), whereas the recessive genetic model showed that SRS SNP rs8081273 was protective for T2D (OR = 0.42, P = 0.003).
CONCLUSION: This study confirmed the association of PTPRD rs17584499 genetic variations with T2D in Malaysian Indians. While the SRR rs8081273 (TT) genotype showed protection against T2D, more investigation in different populations is required to confirm this protection.
MATERIALS AND METHODS: The KCNQ1 single nucleotide polymorphisms (SNPs): rs2237892, rs2283228, and rs2237895 were genotyped in 234 T2D and 177 normal Malay subjects.
RESULTS: The risk allele of the rs2283228 (A) was strongly associated with T2D (OR = 1.7, P = 0.0006) while the rs2237892 (C) was moderately associated with T2D (OR = 1.45, P = 0.017). The recessive genetic models showed that rs2283228 was strongly associated with T2D (OR = 2.35, P = 0.00005) whereas rs2237892 showed a moderate association with T2D (OR = 1.69, P = 0.01). The haplotype block (TCA), which contained the protective allele, correlated with a protection from T2D (OR = 0.5, P = 0.003). Furthermore, the diplotype (CAA-TCA) that contained the protective haplotype was protected against T2D (OR = 0.46, P = 0.006).
CONCLUSION: The KCNQ1 SNPs, haplotypes and diplotypes are associated with T2D in the Malaysian Malay subjects.