Displaying all 10 publications

Abstract:
Sort:
  1. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
  2. Al-Marzooq F, Mohd Yusof MY, Tay ST
    PLoS One, 2015;10(7):e0133654.
    PMID: 26203651 DOI: 10.1371/journal.pone.0133654
    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6')-Ib, aac(6')-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.
  3. Al-Marzooq F, Imad MA, How SH, Kuan YC
    Trop Biomed, 2011 Dec;28(3):545-56.
    PMID: 22433883 MyJurnal
    Establishing a microbial diagnosis for patients with community-acquired pneumonia (CAP) is still challenging and is often achieved in only 30-50% of cases. Polymerase chain reaction (PCR) has been shown to be more sensitive than conventional microbiological methods and it could help to increase the microbial yield for CAP patients. This study was designed to develop, optimize and evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP namely Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Duplex and triplex real-time PCR assays were developed using five sets of primers and probes that were designed based on an appropriate specific gene for each of the above CAP pathogens. The performance of primers for each organism was tested using SYBR Green melt curve analysis following monoplex realtime PCR amplification. Monoplex real-time PCR assays were also used to optimize each primers-probe set before combining them in multiplex assays. Two multiplex real-time PCR assays were then optimized; duplex assay for the differential detection of S. pneumoniae and B. pseudomallei, and triplex assay for the atypical bacterial pathogens. Both duplex and triplex real-time PCR assays were tested for specificity by using DNA extracted from 26 related microorganisms and sensitivity by running serial dilutions of positive control DNAs. The developed multiplex real-time PCR assays shall be used later for directly identifying CAP causative agents in clinical samples.
  4. Abdullah N, Al-Marzooq F, Mohamad S, Abd Rahman N, Chi Ngo H, Perera Samaranayake L
    J Oral Microbiol, 2019;11(1):1647757.
    PMID: 31489127 DOI: 10.1080/20002297.2019.1647757
    Background: Oral biofilms are the root cause of major oral diseases. As in vitro biofilms are not representative of the intraoral milieu, various devices have been manufactured over the years to develop Appliance Grown Oral Biofilm (AGOB). Objective: To review various intraoral appliances used to develop AGOB for microbiological analysis, and to judge the optimal means for such analyses. Design: Four databases (PubMed, Science Direct, Scopus and Medline) were searched by two independent reviewers, and articles featuring the key words 'device' OR 'splint' OR 'appliance'; 'Oral biofilm' OR 'dental plaque'; 'in vivo' OR 'in situ'; 'Microbiology' OR 'Bacteria' OR 'microbiome'; were included. The standard Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) were adopted for data gathering. Results: Of the 517 articles which met the initial inclusion criteria, 24 were deemed eligible for review. The age of the AGOB, sampled at various intervals, ranged from 30 min to 28 days. The most commonly used microbiome analytical methods were fluorescence microscopy, total cell count using conventional, and molecular tools including Next Generation Sequencing (NGS) platforms. Conclusions: No uniformly superior method for collecting AGOB could be discerned. NGS platforms are preferable for AGOB analyses.
  5. Abdullah N, Al Marzooq F, Mohamad S, Abd Rahman N, Rani KGA, Chi Ngo H, et al.
    PLoS One, 2020;15(11):e0241519.
    PMID: 33141868 DOI: 10.1371/journal.pone.0241519
    Silver diamine fluoride (SDF) is commonly used to arrest caries lesions, especially in early childhood caries. Recently, it was suggested that SDF can be combined with potassium iodide (KI) to minimize the discoloration of demineralized dentine associated with SDF application. However, the antibacterial efficacy of SDF alone or combined with KI on in-situ biofilm is unknown. Hence, we compared the anti-plaque biofilm efficacy of two different commercially available SDF solutions, with or without KI, using an in-situ biofilm, analysed using viability real-time PCR with propidium monoazide (PMA). Appliance-borne in-situ biofilm samples (n = 90) were grown for a period of 6 h in five healthy subjects who repeated the experiment on three separate occasions, using a validated, novel, intraoral device. The relative anti-biofilm efficacy of two SDF formulations; 38.0% Topamine (SDFT) and 31.3%, Riva Star (SDFR), KI alone, and KI in combination with SDFR (SDFR+KI) was compared. The experiments were performed by applying an optimized volume of the agents onto the biofilm for 1min, mimicking the standard clinical procedure. Afterwards the viability of the residual biofilm bacteria was quantified using viability real-time PCR with PMA, then the percentage of viable from total bacteria was calculated. Both SDF formulations (SDFT and SDFR) exhibited potent antibacterial activities against the in-situ biofilm; however, there was non-significant difference in their efficacy. KI alone did not demonstrate any antibacterial effect, and there was non-significant difference in the antibacterial efficacy of SDF alone compared to SDF with KI, (SDFT v SDFR/KI). Thus, we conclude that the antibacterial efficacy of SDF against plaque biofilms is not modulated by KI supplements. Viability real-time PCR with PMA was successfully used to analyze the viability of naturally grown oral biofilm; thus, the same method can be used to test the antimicrobial effect of other agents on oral biofilms in future research.
  6. Abraham SB, Al Marzooq F, Himratul-Aznita WH, Ahmed HMA, Samaranayake LP
    BMC Oral Health, 2020 12 01;20(1):347.
    PMID: 33256696 DOI: 10.1186/s12903-020-01347-5
    BACKGROUND: There is limited data on the prevalence of Candida species in infected root canal systems of human teeth. We attempted to investigate the prevalence, genotype, virulence and the antifungal susceptibility of Candida albicans isolated from infected root canals of patients with primary and post-treatment infections in a UAE population.

    METHODS: Microbiological samples from 71 subjects with infected root canals were aseptically collected, and cultured on Sabouraud dextrose agar, and C. albicans was identified using multiplex polymerase chain reaction, and the isolates were further subtyped using ABC genotyping system. Their relative virulence was compared using further four archival samples of endodontic origin from another geographical region, and four more salivary isolates, as controls. The virulence attributes compared were biofilm formation, and production of phospholipase and haemolysin, and the susceptibility to nystatin, amphotericin B, ketoconazole, and fluoconazole was also tested.

    RESULTS: 4 out of 71 samples (5.6%) yielded Candida species. On analysis of variance among the groups, the intracanal isolates, mainly Genotype A, possessed a high degree of phospholipase and haemolysin activity (p 

  7. Mustafa MI, Al-Marzooq F, How SH, Kuan YC, Ng TH
    Trop Biomed, 2011 Dec;28(3):531-44.
    PMID: 22433882 MyJurnal
    Community-acquired pneumonia (CAP) is still a major cause of morbidity and mortality especially to children and compromised hosts, such as the old and those with underlying chronic diseases. Knowledge of pathogens causing CAP constitutes the basis for selection of antimicrobial treatment. Previous data have shown that etiological agents can be identified in only up to 50% of patients, but this figure can be improved by using polymerase chain reaction (PCR). This study was designed to evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP (Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens namely Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila) in CAP patients attending Hospital Tengku Ampuan Afzan (HTAA)/ Kuantan, Pahang, Malaysia. Two previously developed multiplex real-time PCR assays, duplex for the differential detection of S. pneumoniae and B. pseudomallei and triplex for the atypical bacterial pathogens, were used to detect a bacterial cause of CAP in blood and respiratory samples. Thus, 46 blood and 45 respiratory samples collected from 46 adult CAP patients admitted to HTAA were analysed by multiplex real-time PCR assays and conventional methods. The microbial etiology of CAP could be established for 39.1% (18/46) of CAP patients by conventional methods and this was increased to 65.2% (30/46) with the additional use of real-time PCR. The most frequently detected pathogens were S. pneumoniae (21.7% - all by PCR alone), Klebsiella pneumoniae (17.3%), B. pseudomallei (13% - 83% of them positive by PCR alone and 17% by both culture and PCR), Pseudomonas aeruginosa (6.5%), M. pneumoniae (6.5% - all by serology), C. pneumoniae (4.3% - all positive by both PCR and serology), L. pneumophila (2.1% - all by PCR alone), Escherichia coli (4.3%). Haemophilus infuenzae, Acinetobacter lwoffii and Acinetobacter baumannii were detected by conventional methods (2.1% for each).
  8. B Abraham S, Al-Marzooq F, Samaranayake L, Hamoudi RA, Himratul-Aznita WH, Aly Ahmed HM
    PLoS One, 2024;19(7):e0305537.
    PMID: 39008450 DOI: 10.1371/journal.pone.0305537
    OBJECTIVE: Endodontic microbiota appears to undergo evolutionary changes during disease progression from inflammation to necrosis and post-treatment. The aim of this study was to compare microbiome composition and diversity in primary and post-treatment endodontic infections from a cohort of patients from the UAE.

    DESIGN: Intracanal samples were collected from primarily infected (n = 10) and post-treatment infected (n = 10) root canals of human teeth using sterile paper points. Bacterial DNA was amplified from seven hypervariable regions (V2-V4 and V6-V9) of the 16S rRNA gene, then sequenced using next-generation sequencing technology. The data was analyzed using appropriate bioinformatic tools.

    RESULTS: Analyses of all the samples revealed eight major bacterial phyla, 112 genera and 260 species. Firmicutes was the most representative phylum in both groups and was significantly more abundant in the post-treatment (54.4%) than in primary (32.2%) infections (p>0.05). A total of 260 operational taxonomic units (OTUs) were identified, of which 126 (48.5%) were shared between the groups, while 83 (31.9%) and 51 (19.6%) disparate species were isolated from primary and post-treatment infections, respectively. A significant difference in beta, but not alpha diversity was noted using several different indices (p< 0.05). Differential abundance analysis indicated that, Prevotella maculosa, Streptococcus constellatus, Novosphigobium sediminicola and Anaerococcus octavius were more abundant in primary infections while Enterrococcus faecalis, Bifidobacterium dentium, Olsenella profusa and Actinomyces dentalis were more abundant in post-treatment infections (p <0.05).

    CONCLUSION: Significant differences in the microbiome composition and diversity in primary and post-treatment endodontic infections were noted in our UAE cohort. Such compositional differences of microbiota at various stages of infection could be due to both intrinsic and extrinsic factors impacting the root canal ecosystem during disease progression, as well as during their therapeutic management. Identification of the key microbiota in primarily and secondarily infected root canals can guide in the management of these infections.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links