Displaying all 2 publications

Abstract:
Sort:
  1. Dessie BK, Mehari B, Tefera M, Osman M, Tsegaye Y, Gari SR, et al.
    Toxicol Rep, 2022;9:1777-1787.
    PMID: 36518487 DOI: 10.1016/j.toxrep.2022.09.006
    The objective of this study was to evaluate the association between exposure to heavy metals and oxidative DNA damage among residents living in the potentially more polluted downstream (Akaki-Kality) area of Addis Ababa, in comparison to the upstream area (Gullele). For this, 8-hydroxy-2'-deoxyguanosine (8-OHdG) was used as a biomarker for oxidative DNA damage and heavy metals (Fe, Zn, Mn, Cu, Ni, Cr, Pb, As) as indicators of exposure. The concentrations of heavy metals in nails were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES), and 8-OHdG in urine using Enzyme-Linked with Immunosorbent Assay (ELISA), from 95 residents of the two areas, upstream and downstream. The urinary 8-OHdG concentration was not significantly different (p = 0.05) between the two Sub-Cities, with mean of 18.50 ± 4.37 ng/mg Creatinine in Akaki-Kality and 17.30 ± 5.83 ng/mg Creatinine in Gullele. Also, there were no statistically significant (p = 0.05) difference among the different demographic groups according to gender, age, educational status, body mass index or habit of alcohol consumption. However, the interactions of sex with age, sex with alcohol consumption and alcohol consumption with education were found to affect the urinary 8-OHdG levels of residents of the two Sub-Cities. The mean concentrations (µg/g) of the elements were 488 and 1035 for Fe, 106 and 251 for Zn, 13.0 and 31.2 for Mn, 5.23 and 6.63 for Cu, 11.2 and 7.39 for Ni, 2.23 and 2.02 for Cr, 0.09 and 0.63 for Pb; and 0.16 and 0.25 for As, in nail samples from Akaki-Kality and Gullele, respectively. The determined concentrations of the heavy metals in nails were not significantly associated (p = 0.05) with the corresponding urinary levels of 8-OHdG. Hence, the observed 8-OHdG might have been caused by environmental exposure to toxic substances other than the analyzed heavy metals.
  2. Dessie BK, Mehari B, Osman M, Gari SR, Desta AF, Melaku S, et al.
    Biometals, 2022 Dec;35(6):1341-1358.
    PMID: 36163536 DOI: 10.1007/s10534-022-00448-8
    The Akaki River in the Upper Awash Basin, which flows through Addis Ababa, the capital city of Ethiopia, has been highly polluted by sewage from factories and residential areas. A population-based cross-sectional study was used to assess the association between trace elements and kidney injury from residents living in polluted areas downstream (Akaki-Kality) versus upstream (Gullele) in Sub-Cities of Addis Ababa. A total of 95 individuals (53 from Akaki-Kality and 42 from Gullele) were included in the study. Kidney injury molecule 1 (KIM-1), lead, arsenic, cadmium, cobalt, lead, manganese, zinc, iron, copper, chromium and nickel were evaluated in residents' urine and nail samples. A large proportion (74%) of the sample population contained KIM-1, including 81% residents in Akaki-Kality and 64% residents in Gullele. KIM-1 was, however, not significantly different (p = 0.05) between the two Sub-Cities, with median of 0.224 ng/mL in Akaki-Kality and 0.152 ng/mL in Gullele. Most of the analyzed elements, except Pb, As, Cd and Co, were found in all of the nail samples, with median (µg/g) in the range of 442‒714 Fe, 97.0‒246 Zn, 11.6‒24.1 Mn, 4.49‒5.85 Cu, 1.46‒1.66 Cr and 1.22‒1.41 Ni. The high incidence of KIM-1 indicates a potential for long term renal tubular damage among residents of the Sub-Cities. The concentrations of the elements in nails were, however, not significantly associated (p = 0.05) with the corresponding levels of KIM-1 in urine. Hence, the observed KIM-1 might be related to exposure to toxic substances or factors other than those included in this study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links