OBJECTIVE: To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer.
DESIGN, SETTING, AND PARTICIPANTS: SNPs implicated in any phenotype other than prostate cancer (p≤10(-7)) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24,534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated.
RESULTS AND LIMITATIONS: A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p=1.6×10(-6)), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95% CI 1.16-1.27; p=3.22×10(-18)). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86-0.94; p=2.5×10(-6)). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12, 95% CI 1.06-1.19; p=4.67×10(-5)); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL.
CONCLUSIONS: We did not identify new SNPs for aggressive prostate cancer. However, rs16844874 may provide preliminary genetic evidence on the role of the glycine pathway in prostate cancer etiology.
PATIENT SUMMARY: We evaluated whether genetic variants associated with several traits are linked to the risk of aggressive prostate cancer. No new such variants were identified.
METHODS: Collaborating investigators from 15 prospective studies provided individual-participant records (from predominantly men of white European ancestry) on blood or toenail selenium concentrations and prostate cancer risk. Odds ratios of prostate cancer by selenium concentration were estimated using multivariable-adjusted conditional logistic regression. All statistical tests were two-sided.
RESULTS: Blood selenium was not associated with the risk of total prostate cancer (multivariable-adjusted odds ratio [OR] per 80 percentile increase = 1.01, 95% confidence interval [CI] = 0.83 to 1.23, based on 4527 case patients and 6021 control subjects). However, there was heterogeneity by disease aggressiveness (ie, advanced stage and/or prostate cancer death, Pheterogeneity = .01), with high blood selenium associated with a lower risk of aggressive disease (OR = 0.43, 95% CI = 0.21 to 0.87) but not with nonaggressive disease. Nail selenium was inversely associated with total prostate cancer (OR = 0.29, 95% CI = 0.22 to 0.40, Ptrend < .001, based on 1970 case patients and 2086 control subjects), including both nonaggressive (OR = 0.33, 95% CI = 0.22 to 0.50) and aggressive disease (OR = 0.18, 95% CI = 0.11 to 0.31, Pheterogeneity = .08).
CONCLUSIONS: Nail, but not blood, selenium concentration is inversely associated with risk of total prostate cancer, possibly because nails are a more reliable marker of long-term selenium exposure. Both blood and nail selenium concentrations are associated with a reduced risk of aggressive disease, which warrants further investigation.
OBJECTIVE: To investigate the associations between circulating folate and vitamin B12 concentrations and risk of PCa overall and by disease stage and grade.
DESIGN, SETTING, AND PARTICIPANTS: A study was performed with a nested case-control design based on individual participant data from six cohort studies including 6875 cases and 8104 controls; blood collection from 1981 to 2008, and an average follow-up of 8.9 yr (standard deviation 7.3). Odds ratios (ORs) of incident PCa by study-specific fifths of circulating folate and vitamin B12 were calculated using multivariable adjusted conditional logistic regression.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Incident PCa and subtype by stage and grade.
RESULTS AND LIMITATIONS: Higher folate and vitamin B12 concentrations were associated with a small increase in risk of PCa (ORs for the top vs bottom fifths were 1.13 [95% confidence interval (CI), 1.02-1.26], ptrend=0.018, for folate and 1.12 [95% CI, 1.01-1.25], ptrend=0.017, for vitamin B12), with no evidence of heterogeneity between studies. The association with folate varied by tumour grade (pheterogeneity<0.001); higher folate concentration was associated with an elevated risk of high-grade disease (OR for the top vs bottom fifth: 2.30 [95% CI, 1.28-4.12]; ptrend=0.001), with no association for low-grade disease. There was no evidence of heterogeneity in the association of folate with risk by stage or of vitamin B12 with risk by stage or grade of disease (pheterogeneity>0.05). Use of single blood-sample measurements of folate and B12 concentrations is a limitation.
CONCLUSIONS: The association between higher folate concentration and risk of high-grade disease, not evident for low-grade disease, suggests a possible role for folate in the progression of clinically relevant PCa and warrants further investigation.
PATIENT SUMMARY: Folate, a vitamin obtained from foods and supplements, is important for maintaining cell health. In this study, however, men with higher blood folate levels were at greater risk of high-grade (more aggressive) prostate cancer compared with men with lower folate levels. Further research is needed to investigate the possible role of folate in the progression of this disease.
METHODS: In total, 299 SNPs previously associated with prostate cancer were evaluated for inclusion in a new PHS, using a LASSO-regularized Cox proportional hazards model in a training dataset of 72,181 men from the PRACTICAL Consortium. The PHS model was evaluated in four testing datasets: African ancestry, Asian ancestry, and two of European Ancestry-the Cohort of Swedish Men (COSM) and the ProtecT study. Hazard ratios (HRs) were estimated to compare men with high versus low PHS for association with clinically significant, with any, and with fatal prostate cancer. The impact of genetic risk stratification on the positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was also measured.
RESULTS: The final model (PHS290) had 290 SNPs with non-zero coefficients. Comparing, for example, the highest and lowest quintiles of PHS290, the hazard ratios (HRs) for clinically significant prostate cancer were 13.73 [95% CI: 12.43-15.16] in ProtecT, 7.07 [6.58-7.60] in African ancestry, 10.31 [9.58-11.11] in Asian ancestry, and 11.18 [10.34-12.09] in COSM. Similar results were seen for association with any and fatal prostate cancer. Without PHS stratification, the PPV of PSA testing for clinically significant prostate cancer in ProtecT was 0.12 (0.11-0.14). For the top 20% and top 5% of PHS290, the PPV of PSA testing was 0.19 (0.15-0.22) and 0.26 (0.19-0.33), respectively.
CONCLUSIONS: We demonstrate better genetic risk stratification for clinically significant prostate cancer than prior versions of PHS in multi-ancestry datasets. This is promising for implementing precision-medicine approaches to prostate cancer screening decisions in diverse populations.
METHODS: The case-control portion of the study was conducted in nine UK centers with men ages 50-69 years who underwent prostate-specific antigen screening for prostate cancer within the Prostate Testing for Cancer and Treatment (ProtecT) trial. Two data sources were used to appraise causality: a genome-wide association study (GWAS) of metabolites in 24,925 participants and a GWAS of prostate cancer in 44,825 cases and 27,904 controls within the Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.
RESULTS: Thirty-five metabolites were strongly associated with prostate cancer (P < 0.0014, multiple-testing threshold). These fell into four classes: (i) lipids and lipoprotein subclass characteristics (total cholesterol and ratios, cholesterol esters and ratios, free cholesterol and ratios, phospholipids and ratios, and triglyceride ratios); (ii) fatty acids and ratios; (iii) amino acids; (iv) and fluid balance. Fourteen top metabolites were proxied by genetic variables, but MR indicated these were not causal.
CONCLUSIONS: We identified 35 circulating metabolites associated with prostate cancer presence, but found no evidence of causality for those 14 testable with MR. Thus, the 14 MR-tested metabolites are unlikely to be mechanistically important in prostate cancer risk.
IMPACT: The metabolome provides a promising set of biomarkers that may aid prostate cancer classification.
METHODS: We conducted a gene-environment interaction (GxE) analysis including 8,255 cases and 11,900 controls from four pancreatic cancer genome-wide association study (GWAS) datasets (Pancreatic Cancer Cohort Consortium I-III and Pancreatic Cancer Case Control Consortium). Obesity (body mass index ≥30 kg/m2) and diabetes (duration ≥3 years) were the environmental variables of interest. Approximately 870,000 SNPs (minor allele frequency ≥0.005, genotyped in at least one dataset) were analyzed. Case-control (CC), case-only (CO), and joint-effect test methods were used for SNP-level GxE analysis. As a complementary approach, gene-based GxE analysis was also performed. Age, sex, study site, and principal components accounting for population substructure were included as covariates. Meta-analysis was applied to combine individual GWAS summary statistics.
RESULTS: No genome-wide significant interactions (departures from a log-additive odds model) with diabetes or obesity were detected at the SNP level by the CC or CO approaches. The joint-effect test detected numerous genome-wide significant GxE signals in the GWAS main effects top hit regions, but the significance diminished after adjusting for the GWAS top hits. In the gene-based analysis, a significant interaction of diabetes with variants in the FAM63A (family with sequence similarity 63 member A) gene (significance threshold P < 1.25 × 10-6) was observed in the meta-analysis (P GxE = 1.2 ×10-6, P Joint = 4.2 ×10-7).
CONCLUSIONS: This analysis did not find significant GxE interactions at the SNP level but found one significant interaction with diabetes at the gene level. A larger sample size might unveil additional genetic factors via GxE scans.
IMPACT: This study may contribute to discovering the mechanism of diabetes-associated pancreatic cancer.
MATERIALS AND METHOD: 180 SNPs, shown to be previously associated with prostate cancer, were used to develop a PHS model in men with European ancestry. A machine-learning approach, LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients in the training set (75,596 men). Performance of the resulting model was evaluated in the testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 20% (PPV80) and top 5% (PPV95) of PHS as the fraction of individuals with elevated PSA that were diagnosed with clinically significant prostate cancer on biopsy.
RESULTS: 166 SNPs had non-zero coefficients in the Cox model (PHS166). All HR metrics showed significant improvements for PHS166 compared to PHS46: HR95/50 increased from 3.72 to 5.09, HR80/20 increased from 6.12 to 9.45, and HR20/50 decreased from 0.41 to 0.34. By contrast, no significant differences were observed in PPV of PSA testing for clinically significant prostate cancer.
CONCLUSIONS: Incorporating 120 additional SNPs (PHS166 vs PHS46) significantly improved HRs for prostate cancer, while PPV of PSA testing remained the same.
METHODS: We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data.
RESULTS: Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex.
CONCLUSIONS: Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk.
IMPACT: These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.