Displaying all 5 publications

Abstract:
Sort:
  1. Ooi EH, Popov V, Alfano M, Cheong JKK
    Int J Hyperthermia, 2020;37(1):634-650.
    PMID: 32538190 DOI: 10.1080/02656736.2020.1771437
    Background: The thermally-induced urine flow can generate cooling that may alter the treatment outcome during hyperthermic treatments of bladder cancer. This paper investigates the effects of natural convection inside the bladder and at skin surface during gold nanorods (GNR) - assisted photothermal therapy (PTT) of bladder cancer in mice. Methods: 3D models of mouse bladder at orientations corresponding to the mouse positioned on its back, its side and its abdomen were examined. Numerical simulations were carried out for GNR volume fractions of 0.001, 0.005 and 0.01% and laser power of 0.2 and 0.3 W. Results: The obtained results showed that cooling due to natural convection inside the bladder and above the skin depends on the mouse orientation. For a mouse positioned on its back, on its side or on its abdomen, the maximum temperature achieved inside the tumour at 0.001% GNR volume fraction and 0.2 W laser power was 55.2°C, 50.0°C and 52.2°C, respectively compared to 56.8°C when natural convection was not considered. The average thermal gradients when natural convection was considered were also lower, suggesting a more homogenous temperature distribution. Conclusions: Natural convection inside the bladder can be beneficial but also detrimental to GNR-assisted PTT depending on the level of heating. At low levels of heating due to low GNR volume fraction and/or laser power, flow inside the bladder may dissipate heat from the targeted tissue; making the treatment ineffective. At high levels of heating due to high GNR volume fraction and/or laser power, cooling may prevent excessive thermal damage to surrounding tissues.
  2. Cheong JK, Popov V, Alchera E, Locatelli I, Alfano M, Menichetti L, et al.
    Comput Biol Med, 2021 11;138:104881.
    PMID: 34583149 DOI: 10.1016/j.compbiomed.2021.104881
    Gold nanorods assisted photothermal therapy (GNR-PTT) is a new cancer treatment technique that has shown promising potential for bladder cancer treatment. The position of the bladder cancer at different locations along the bladder wall lining can potentially affect the treatment efficacy since laser is irradiated externally from the skin surface. The present study investigates the efficacy of GNR-PTT in the treatment of bladder cancer in mice for tumours growing at three different locations on the bladder, i.e., Case 1: closest to skin surface, Case 2: at the bottom half of the bladder, and Case 3: at the side of the bladder. Investigations were carried out numerically using an experimentally validated framework for optical-thermal simulations. An in-silico approach was adopted due to the flexibility in placing the tumour at a desired location along the bladder lining. Results indicate that for the treatment parameters considered (laser power 0.3 W, GNR volume fraction 0.01% v/v), only Case 1 can be used for an effective GNR-PTT. No damage to the tumour was observed in Cases 2 and 3. Analysis of the thermo-physiological responses showed that the effectiveness of GNR-PTT in treating bladder cancer depends not only on the depth of the tumour from the skin surface, but also on the type of tissue that the laser must pass through before reaching the tumour. In addition, the results are reliant on GNRs with a diameter of 10 nm and an aspect ratio of 3.8 - tuned to exhibit peak absorption for the chosen laser wavelength. Results from the present study can be used to highlight the potential for using GNR-PTT for treatment of human bladder cancer. It appears that Cases 2 and 3 suggest that GNR-PTT, where the laser passes through the skin to reach the bladder, may be unfeasible in humans. While this study shows the feasibility of using GNRs for photothermal ablation of bladder cancer, it also identifies the current limitations needed to be overcome for an effective clinical application in the bladder cancer patients.
  3. Cheong JK, Ooi EH, Chiew YS, Menichetti L, Armanetti P, Franchini MC, et al.
    Comput Methods Programs Biomed, 2023 Mar;230:107363.
    PMID: 36720181 DOI: 10.1016/j.cmpb.2023.107363
    BACKGROUND AND OBJECTIVES: Gold nanorod-assisted photothermal therapy (GNR-PTT) is a cancer treatment whereby GNRs incorporated into the tumour act as photo-absorbers to elevate the thermal destruction effect. In the case of bladder, there are few possible routes to target the tumour with GNRs, namely peri/intra-tumoural injection and intravesical instillation of GNRs. These two approaches lead to different GNR distribution inside the tumour and can affect the treatment outcome.

    METHODOLOGY: The present study investigates the effects of heterogeneous GNR distribution in a typical setup of GNR-PTT. Three cases were considered. Case 1 considered the GNRs at the tumour centre, while Case 2 represents a hypothetical scenario where GNRs are distributed at the tumour periphery; these two cases represent intratumoural accumulation with different degree of GNR spread inside the tumour. Case 3 is achieved when GNRs target the exposed tumoural surface that is invading the bladder wall, when they are delivered by intravesical instillation.

    RESULTS: Results indicate that for a laser power of 0.6 W and GNR volume fraction of 0.01%, Case 2 and 3 were successful in achieving complete tumour eradication after 330 and 470 s of laser irradiation, respectively. Case 1 failed to form complete tumour damage when the GNRs are concentrated at the tumour centre but managed to produce complete tumour damage if the spread of GNRs is wider. Results from Case 2 also demonstrated a different heating profile from Case 1, suggesting that thermal ablation during GNR-PTT is dependant on the GNRs distribution inside the tumour. Case 3 shows similar results to Case 2 whereby gradual but uniform heating is observed. Cases 2 and 3 show that uniformly heating the tumour can reduce damage to the surrounding tissues.

    CONCLUSIONS: Different GNR distribution associated with the different methods of introducing GNRs to the bladder during GNR-PTT affect the treatment outcome of bladder cancer in mice. Insufficient spreading during intratumoural injection of GNRs can render the treatment ineffective, while administered via intravesical instillation. GNR distribution achieved through intravesical instillation present some advantages over intratumoural injection and is worthy of further exploration.

  4. Schilthuizen M, Lim JP, van Peursen ADP, Alfano M, Jenging AB, Cicuzza D, et al.
    Biodivers Data J, 2020;8:e47484.
    PMID: 32132859 DOI: 10.3897/BDJ.8.e47484
    Background: Terrestrial Caenogastropoda form an important but threatened component of the Borneo tropical rainforest malacofauna, where the group is nearly as rich in species as the Stylommatophora. They are, however, more sensitive to drought, temperature extremes and forest degradation.

    New information: On a field course at Kuala Belalong Field Studies Centre in Brunei Darussalam (Borneo), a new caenogastropod species, belonging to the genus Craspedotropis, was discovered by the course participants. The participants decided to name the species Craspedotropis gretathunbergae n. sp., in honour of the climate change activist Greta Thunberg, as caenogastropod land snails, such as this species, are likely to suffer because of climate change.

  5. Pavlović T, Azevedo F, De K, Riaño-Moreno JC, Maglić M, Gkinopoulos T, et al.
    PNAS Nexus, 2022 Jul;1(3):pgac093.
    PMID: 35990802 DOI: 10.1093/pnasnexus/pgac093
    At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution-individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links