METHODS: We conducted an observational cross-sectional study among severe LRTI patients between September 2021 and March 2022. Respiratory samples from 545 non-COVID-19 severe LRTIs patients were prospectively evaluated with FTD Respiratory 21 Plus® real-time PCR, targeting 20 different viruses and 1 atypical bacterial pathogen.
RESULTS: Among all 545 hospitalized cases, 411 (75.4 %) tested positive for at least one respiratory pathogen. The most common were rhinovirus (HRV) (32.7 %), respiratory syncytial virus (RSV) (20.9 %), metapneumovirus (HMPV) (14.1 %), bocavirus (13.2 %), and influenza A (12.7 %). The proportion of pathogens detected was highest in the under-5 age group, while HKU1 (44.4 %) predominated in the elderly (>50 years).
CONCLUSION: Our study reveals a high prevalence of respiratory viruses in severe acute lower respiratory tract infections among non-COVID-19 hospitalized patients in Kuwait. HRV remains the main etiology affecting the country, particularly in infants. These results underscore the necessity of employing multiplex PCR for accurate diagnosis and describing the epidemiology of infections among severe lower respiratory tract infections. This will facilitate the use of specific antiviral therapy and help avoid excessive or inappropriate antibiotic therapy.
METHODS: A retrospective descriptive study was conducted based on AMR profiles of clinical Escherichia coli and Pseudomonas aeruginosa isolates. The AMR data represented isolates from five specimen types (body fluids; blood; respiratory; wound, bone, or other tissues; and urine) of patients admitted to four wards (surgical, medical, pediatric, and maternal-postnatal). Tested isolates between January 2019 and February 2020 represented the pre-COVID-19 pandemic period in Kuwait, whereas those from February 2020 until April 2021 represented the 'during COVID-19' period.
RESULTS: A total of 1,303 isolates (57.2% E. coli and 42.8% P. aeruginosa) were analyzed. For ceftazidime, ertapenem and meropenem, the prevalence of AMR in E. coli was significantly (p<0.05) lower in pre-COVID-19 wards compared to that during COVID-19, whereas for other antibiotics (i.e., cefepime, gentamicin, and trimethoprim/sulfamethoxazole), the prevalence of AMR in pre-COVID-19 was significantly higher than that during COVID-19. The prevalence of AMR to gentamicin in P. aeruginosa isolates from non-COVID-19 wards (52.8%) was significantly higher (p<0.001) than that from COVID-19 wards (35.0%) and from the pre-COVID-19 period (32.9%). The multidrug-resistance (MDR) prevalence was 37.4% for E. coli and 32.1% for P. aeruginosa isolates. The odds of MDR in E. coli isolates from the COVID-19 medical wards were significantly lower (OR=0.27, [95%CI: 0.09-0.80], p=0.018) compared to the pre-COVID-19 wards. The odds of MDR E. coli and P. aeruginosa isolates by COVID-19 status stratified by specimen type were not different (p>0.05).
CONCLUSIONS: No major differences in AMR in E. coli and P. aeruginosa prevalence by specimen type and wards prior to and during the COVID-19 pandemic was observed at this hospital. The high reported MDR prevalence calls for better infection control and prevention.
METHODS AND RESULTS: Fifteen clinical isolates (isolated from tracheal secretion, urine and bronchoalveolar lavage) were subjected to whole genome sequencing. Raw sequences were assembled using SPAdes and species were identified using KmerFinder 3.2. The assembled genomes were annotated using the Prokka v1.14.6. Resfinder 4.6.0 was used to determine antibiotic resistance genes. The sequences were aligned against seven housekeeping genes aka sequence tags (STs) available within the MLST database (v 2.0.9). MobileGeneticElement finder (v1.0.3) were used for profiling mobile genetic elements associated with the antibiotic resistance genes. The genomes of nosocomial A. baumannii were assembled with an average N50 of 23,480 and GC content of 38%. There were approximately 3700 CDs, 53 tRNA and 3 rRNA. About 80% of the isolates were ST2 type. The genomes possessed antibiotic resistance genes (n = 24) belonging to 17 drug classes. The predicted phenotype was multidrug resistant. Among the mobile genetic elements, 12 insertion sequences and 2 composite transposons were also found. The mode of antibiotic resistance was mostly through antibiotic inactivation in all the isolates.
CONCLUSIONS: The results imply the occurrence of multidrug resistant genes in clinical isolates of A. baumannii strains in the healthcare settings of Kuwait. A more comprehensive survey should be undertaken for antimicrobial resistance monitoring on a regular basis for surveillance, contact tracing, and potential mitigation in clinical settings.