Displaying all 2 publications

Abstract:
Sort:
  1. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N
    Microb Pathog, 2018 Jan;114:323-327.
    PMID: 29229504 DOI: 10.1016/j.micpath.2017.11.043
    Chitosan is the second most abundant polymer obtained from the byproduct of seafood. Chitosan and its derivatives and chitosan loaded drugs are the recent area of interest against microbial pathogenesis. The cationic chitosan nanoparticles (ChNPs) interact with the anionic surfaces of the microbial cell membrane, which promotes antimicrobial activity. Although, ChNPs are potential against pathogenic microbes, selection of adaptable, suitable and cost effective synthesis method is much important. In the present study, ChNPs were synthesized adopting ionic gelation using sodium tripolyphosphate as a cross linking agent and characterized by FTIR, DLS, SEM and TEM analysis. ChNPs were investigated for antimicrobial activity against bacterial (Escherichia coli and Staphylococcus aureus) and fungal (Candida albicans) pathogens. ChNPs showed bactericidal activity at the lower minimum inhibitory concentration of about 40-80 μg mL-1. Interestingly, ChNPs exhibits biocompatible antioxidant property by inhibiting DPPH free radicals at 76% and also proven to be a potential candidate against the microbial pathogenesis with an inevitable applications in biomedicine.
  2. Ayyal Salman H, Yaakop AS, Al-Rimawi F, Ahmad Makhtar AM, Mousa M, Semreen MH, et al.
    Heliyon, 2024 Mar 15;10(5):e27051.
    PMID: 38444505 DOI: 10.1016/j.heliyon.2024.e27051
    The extracts of E. alte offer promising potential as renewable resources for various chemical derivative products aimed at addressing antibiotic resistance. These extracts exhibited significant activity against methicillin-resistant Staphylococcus aureus (MRSA), a strain known for its resistance to multiple antibiotics. The extracts were found to be effective against several common antibiotics, including Imipenem, Ampicillin, Penicillin G, Oxacillin, and Amoxicillin-clavulanate. GC-MS analysis revealed that the phytoconstituents of E. alte extracts, obtained using both methanol and ethyl acetate, consist of a diverse range of 83 and 160 phytocompounds, respectively. These organic compounds serve as important biochemical precursors for the synthesis of vitamins E and K1, and exhibit antioxidant, antimicrobial, and anti-inflammatory properties in both plants and microorganisms. Notable compounds identified include fatty acids (such as palmitic acid, dodecanoic acid, sebacic acid, pentadecanoic acid, myristic acid, stearic acid, behenic acid, and linoelaidic acid), phytosterols (Campesterol, β-sitosterol, Stigmast-5-ene), sugars (D-fructose, Fructofuranans), terpenoids (Phytol, citronellol), and phenolic acids (Protocatechoic acid, shikimic acid). The antimicrobial activity of all E. alte extracts was found to be superior to that of mupirocin and ciprofloxacin, as observed in susceptibility testing against MRSA ATCC 43300 and other pathogenic bacteria and fungi. It is likely that the combined action of the antimicrobial components within the E. alte extract bypasses the mechanisms employed by MRSA to protect itself from antibiotics. Further experiments are needed to investigate the individual effects of each pure compound and their potential synergistic interactions, which may enhance their overall performance.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links