Displaying all 3 publications

Abstract:
Sort:
  1. Sulaiman MR, Zakaria ZA, Kamaruddin A, Meng TF, Ali DI, Moin S
    Methods Find Exp Clin Pharmacol, 2008 Nov;30(9):691-6.
    PMID: 19229377 DOI: 10.1358/mf.2008.30.9.1305824
    Trigonopleura malayana L. (Euphorbiaceae) resin, locally known as Gambir Sarawak, has been used traditionally to alleviate pain associated with insect bites, muscle ache, toothache and minor injuries. The present study was carried out using various animal models to determine the antinociceptive and antiinflammatory activities of the T. malayana resin aqueous extract. Antinociceptive activity was measured using the abdominal constriction, hot plate and formalin tests, while antiinflammatory activity was measured using the carrageenan-induced paw edema test. The extract, obtained after 24 h of soaking the dried resin in distilled water, was prepared in doses of 0.3, 3 and 10 mg/kg and administered subcutaneously 30 min prior to the assays. The mechanism of action was also determined by prechallenging with naloxone (10 mg/kg), a nonselective opioid antagonist. The extract was found to exhibit significant (P < 0.05) and dose-dependent antinociceptive and antiinflammatory activities; naloxone failed to inhibit the former activity. In conclusion, the aqueous extract of T. malayana resin possesses nonopioid antinociceptive and antiinflammatory activities, thus supporting previous claims regarding its traditional use by the Malays to treat various ailments, particularly those related to pain.
  2. Zakaria ZA, Sulaiman MR, Somchit MN, Jais AM, Ali DI
    J Pharm Pharm Sci, 2005;8(2):199-206.
    PMID: 16124931
    To determine the involvement of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway in aqueous supernatant of haruan (Channa striatus) fillet (ASH) antinociception using the acetic acid-induced abdominal constriction test.
  3. Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, et al.
    Pharmacol. Biochem. Behav., 2013 Dec;114-115:58-63.
    PMID: 24201054 DOI: 10.1016/j.pbb.2013.10.019
    The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links