Displaying all 2 publications

Abstract:
Sort:
  1. Laftah Al-Yaseen W, Ali Othman Z, Ahmad Nazri MZ
    ScientificWorldJournal, 2015;2015:294761.
    PMID: 26161437 DOI: 10.1155/2015/294761
    Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modified K-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modified K-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy.
  2. Abdul Rahman M, Sani NS, Hamdan R, Ali Othman Z, Abu Bakar A
    PLoS One, 2021;16(8):e0255312.
    PMID: 34339480 DOI: 10.1371/journal.pone.0255312
    The Multidimensional Poverty Index (MPI) is an income-based poverty index which measures multiple deprivations alongside other relevant factors to determine and classify poverty. The implementation of a reliable MPI is one of the significant efforts by the Malaysian government to improve measures in alleviating poverty, in line with the recent policy for Bottom 40 Percent (B40) group. However, using this measurement, only 0.86% of Malaysians are regarded as multidimensionally poor, and this measurement was claimed to be irrelevant for Malaysia as a country that has rapid economic development. Therefore, this study proposes a B40 clustering-based K-Means with cosine similarity architecture to identify the right indicators and dimensions that will provide data driven MPI measurement. In order to evaluate the approach, this study conducted extensive experiments on the Malaysian Census dataset. A series of data preprocessing steps were implemented, including data integration, attribute generation, data filtering, data cleaning, data transformation and attribute selection. The clustering model produced eight clusters of B40 group. The study included a comprehensive clustering analysis to meaningfully understand each of the clusters. The analysis discovered seven indicators of multidimensional poverty from three dimensions encompassing education, living standard and employment. Out of the seven indicators, this study proposed six indicators to be added to the current MPI to establish a more meaningful scenario of the current poverty trend in Malaysia. The outcomes from this study may help the government in properly identifying the B40 group who suffers from financial burden, which could have been currently misclassified.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links