Displaying all 7 publications

Abstract:
Sort:
  1. Zin CS, Alias NE, Taufek NH, Ahmad MM
    J Pain Res, 2019;12:1251-1257.
    PMID: 31118748 DOI: 10.2147/JPR.S199243
    Purpose: This study evaluated the risk of opioid dose escalation as it relates to sex differences among patients receiving opioids for long-term therapy. Patients and methods: This retrospective cohort study was conducted in tertiary hospital settings in Malaysia using electronic prescription records. Opioid naïve patients, aged ≥18 years, who were undergoing long-term opioid therapy of ≥90 days, with at least one opioid prescription (buprenorphine, morphine, oxycodone, fentanyl, dihydrocodeine or tramadol) between 1st January 2011 and 31st December 2016, were included in the study. They were followed until (i) the end of the study period, (ii) death from any cause or (iii) discontinuation of therapy from their first opioid prescription without any intervals of ≥120 days between successive prescriptions. The risk of high opioid dose escalation to ≥100 mg/day and ≥200 mg/day relative to men and women was measured. Results: A total of 4688 patients (58.8% women, 41.3% men) on long-term opioid therapy were identified. Among these patients, 248 (5.29%) were escalated to high opioid doses of ≥100 mg/day and 69 (1.47%) were escalated to ≥200 mg/day. The escalation to high-dose opioid therapy was more likely to occur in men than in women, even after adjustment for age (dose ≥100 mg/day [adjusted hazard ratio 2.32; 95% confidence interval (CI), 1.79 to 3.00; p<0.0001] and ≥200 mg/day [adjusted hazard ratio 6.10; 95% CI, 3.39 to 10.98; p<0.0001]). Conclusion: The risk of opioid dose escalation differed between men and women, as men were at higher risk than women for high opioid dose escalation.
  2. Chin HC, Hamzah A, Alias NE, Tan MLP
    Micromachines (Basel), 2023 Jun 12;14(6).
    PMID: 37374820 DOI: 10.3390/mi14061235
    Molybdenum disulfide (MoS2) has distinctive electronic and mechanical properties which make it a highly prospective material for use as a channel in upcoming nanoelectronic devices. An analytical modeling framework was used to investigate the I-V characteristics of field-effect transistors based on MoS2. The study begins by developing a ballistic current equation using a circuit model with two contacts. The transmission probability, which considers both the acoustic and optical mean free path, is then derived. Next, the effect of phonon scattering on the device was examined by including transmission probabilities into the ballistic current equation. According to the findings, the presence of phonon scattering caused a decrease of 43.7% in the ballistic current of the device at room temperature when L = 10 nm. The influence of phonon scattering became more prominent as the temperature increased. In addition, this study also considers the impact of strain on the device. It is reported that applying compressive strain could increase the phonon scattering current by 13.3% at L = 10 nm at room temperature, as evaluated in terms of the electrons' effective masses. However, the phonon scattering current decreased by 13.3% under the same condition due to the existence of tensile strain. Moreover, incorporating a high-k dielectric to mitigate the impact of scattering resulted in an even greater improvement in device performance. Specifically, at L = 6 nm, the ballistic current was surpassed by 58.4%. Furthermore, the study achieved SS = 68.2 mV/dec using Al2O3 and an on-off ratio of 7.75 × 104 using HfO2. Finally, the analytical results were validated with previous works, showing comparable agreement with the existing literature.
  3. Sa'adi Z, Yusop Z, Alias NE, Shiru MS, Muhammad MKI, Ramli MWA
    Sci Total Environ, 2023 Sep 20;892:164471.
    PMID: 37257620 DOI: 10.1016/j.scitotenv.2023.164471
    This paper aims to select the most appropriate rain-based meteorological drought index for detecting drought characteristics and identifying tropical drought events in the Johor River Basin (JRB). Based on a multi-step approach, the study evaluated seven drought indices, including the Rainfall Anomaly Index (RAI), Standardized Precipitation Index (SPI), China-Z Index (CZI), Modified China-Z Index (MCZI), Percent of Normal (PN), Deciles Index (DI), and Z-Score Index (ZSI), based on the CHIRPS rainfall gridded-based datasets from 1981 to 2020. Results showed that CZI, MCZI, SPI, and ZSI outperformed the other indices based on their correlation and linearity (R2 = 0.96-0.99) along with their ranking based on the Compromise Programming Index (CPI). The historical drought evaluation revealed that MCZI, SPI, and ZSI performed similarly in detecting drought events, but SPI was more effective in detecting spatial coverage and the occurrence of 'very dry' and 'extremely dry' drought events. Based on SPI, the study found that the downstream area, north-easternmost area, and eastern boundary of the basin were more prone to higher frequency and longer duration droughts. Furthermore, the study found that prolonged droughts are characterized by episodic drought events, which occur with one to three months of 'relief period' before another drought event occurs. The study revealed that most drought events that coincide with El Niño, positive Indian Ocean Dipole (IOD), and negative Madden-Julian Oscillation (MJO) events, or a combination of these events, may worsen drought conditions. The application of CHIRPS datasets enables better spatiotemporal mapping and prediction of drought for JRB, and the output is pertinent for improving water management strategies and adaptation measures. Understanding spatiotemporal drought conditions is crucial to ensuring sustainable development and policies through better regulation of human activities. The framework of this research can be applied to other river basins in Malaysia and other parts of Southeast Asia.
  4. Chuan MW, Riyadi MA, Hamzah A, Alias NE, Mohamed Sultan S, Lim CS, et al.
    PLoS One, 2022;17(3):e0264483.
    PMID: 35239699 DOI: 10.1371/journal.pone.0264483
    Moore's Law is approaching its end as transistors are scaled down to tens or few atoms per device, researchers are actively seeking for alternative approaches to leverage more-than-Moore nanoelectronics. Substituting the channel material of a field-effect transistors (FET) with silicene is foreseen as a viable approach for future transistor applications. In this study, we proposed a SPICE-compatible model for p-type (Aluminium) uniformly doped silicene FET for digital switching applications. The performance of the proposed device is benchmarked with various low-dimensional FETs in terms of their on-to-off current ratio, subthreshold swing and drain-induced barrier lowering. The results show that the proposed p-type silicene FET is comparable to most of the selected low-dimensional FET models. With its decent performance, the proposed SPICE-compatible model should be extended to the circuit-level simulation and beyond in future work.
  5. Zin CS, Nazar NI, Rahman NS, Alias NE, Ahmad WR, Rani NS, et al.
    J Pain Res, 2018;11:1959-1966.
    PMID: 30288090 DOI: 10.2147/JPR.S164774
    Purpose: To examine the trends of analgesic prescribing at public tertiary hospital outpatient settings and explore the patterns of their utilization in nonsteroidal anti-inflammatory drugs (NSAIDs), tramadol, and opioid patients.
    Patients and methods: This cross-sectional study was conducted from 2010 to 2016 using the prescription databases of two tertiary hospitals in Malaysia. Prescriptions for nine NSAIDs (ketoprofen, diclofenac, celecoxib, etoricoxib, ibuprofen, indomethacin, meloxicam, mefenamic acid, and naproxen), tramadol, and five other opioids (morphine, fentanyl, oxycodone, dihydrocodeine, and buprenorphine) were included in this study. Annual number of patients and prescriptions were measured in repeat cross-sectional estimates. Descriptive statistics and linear trend analysis were performed using Stata version 13.
    Results: A total of 192,747 analgesic prescriptions of the nine NSAIDs, tramadol, and five other opioids were given for 97,227 patients (51.8% NSAIDs patients, 46.6% tramadol patients, and 1.7% opioid patients) from 2010 to 2016. Tramadol (37.9%, n=72,999) was the most frequently prescribed analgesic, followed by ketoprofen (17.5%, n=33,793), diclofenac (16.2%, n=31,180), celecoxib (12.2%, n=23,487), and other NSAIDs (<4.5%). All the analgesics were increased over time except meloxicam, indomethacin, and mefenamic acid. Opioids, primarily morphine (2.2%, n=4,021) and oxycodone (0.5%, n=1,049), were prescribed the least, but the rate of increase was the highest.
    Conclusion: Tramadol was the most frequently prescribed analgesic in hospital outpatient settings in Malaysia. Opioids were prescribed the least, but noted the highest increase in utilization.
    Data source: Prescription databases of two public tertiary hospitals in Malaysia

    Study site: two public tertiary hospitals in Malaysia
  6. Chuan MW, Wong KL, Riyadi MA, Hamzah A, Rusli S, Alias NE, et al.
    PLoS One, 2021;16(6):e0253289.
    PMID: 34125874 DOI: 10.1371/journal.pone.0253289
    Silicene has attracted remarkable attention in the semiconductor research community due to its silicon (Si) nature. It is predicted as one of the most promising candidates for the next generation nanoelectronic devices. In this paper, an efficient non-iterative technique is employed to create the SPICE models for p-type and n-type uniformly doped silicene field-effect transistors (FETs). The current-voltage characteristics show that the proposed silicene FET models exhibit high on-to-off current ratio under ballistic transport. In order to obtain practical digital logic timing diagrams, a parasitic load capacitance, which is dependent on the interconnect length, is attached at the output terminal of the logic circuits. Furthermore, the key circuit performance metrics, including the propagation delay, average power, power-delay product and energy-delay product of the proposed silicene-based logic gates are extracted and benchmarked with published results. The effects of the interconnect length to the propagation delay and average power are also investigated. The results of this work further envisage the uniformly doped silicene as a promising candidate for future nanoelectronic applications.
  7. Sa'adi Z, Alias NE, Yusop Z, Iqbal Z, Houmsi MR, Houmsi LN, et al.
    Sci Total Environ, 2024 Feb 20;912:169187.
    PMID: 38097068 DOI: 10.1016/j.scitotenv.2023.169187
    The most recent set of General Circulation Models (GCMs) derived from the Coupled Model Intercomparison Project Phase 6 (CMIP6) was used in this work to analyse the spatiotemporal patterns of future rainfall distribution across the Johor River Basin (JRB) in Malaysia. A group of 23 GCMs were chosen for comparative assessment in simulating basin-scale rainfall based on daily rainfall from the historical period of the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS). The methodological novelty of this study lies in the application of relative importance metrics (RIM) to rank and select historical GCM simulations for reproducing rainfall at 109 CHIRPS grid points within the JRB. In order to choose the top GCMs, the rankings given by RIM were aggregated using the compromise programming index (CPI) and Jenks optimised classification (JOC). It was found that ACCESS-ESM1-5 and CMCC-ESM2 were ranked the highest in most of the grid. The final GCM was then bias-corrected using the linear scaling method before being ensemble based on the Bayesian model averaging (BMA) technique. The spatiotemporal assessment of the ensemble model for the different months over the near-future period 2021-2060 and far-future period 2061-2100 was compared with those under Shared Socioeconomic Pathways (SSPs), namely, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Heterogeneous changes in rainfall were projected across the JRB, with both increasing and decreasing trends. In the near-future and far-future scenarios, higher rainfall was projected for December, indicating an elevated risk of flooding during the end of the North East monsoon (NEM). Conversely, August showed a decreasing trend in rainfall, implying an increasing risk of severe drought. The findings of this study provide valuable insights for effective water resource management and climate change adaptation in the region.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links