Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
Olive fiber is a sustainable material as well as alternative biomass for extraction of nanocrystalline cellulose (NCC), which has been widely applied in various industries. In the present study, ONC-I, ONC-II, and ONC-III were extracted from olive stem fiber at different hydrolysis reaction times of 30 min, 45 min, and 60 min, respectively. The nanoparticle size was found gradually reducing from ONC-I (11.35 nm width, 168.28 nm length) to ONC-III (6.92 nm width, 124.16 nm length) due to the disintegration of cellulose fibrils. ONC-II and ONC-III possessed highly pure cellulose compartments and enhanced crystals structure. This study also showed that rigidity increased from ONC-I to ONC-II. ONC-III showed the highest crystallinity of 83.1 %, endowing it as a potentially reliable load-bearing agent. Moreover, ONC-III exhibited highest stable heat resistance among the chemically-isolated nanocellulose. We concluded that olive NCC could be promising materials for a variety of industrial applications in various fields.
In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
Current work aims to study the mechanical and dynamical mechanical properties of non-woven bamboo (B)/woven kenaf (K)/epoxy (E) hybrid composites filled with nanoclay. The nanoclay-filled BK/E hybrid composites were prepared by dispersing 1 wt.% nanoclay (organically-modified montmorillonite (MMT; OMMT), montmorillonite (MMT), and halloysite nanotube (HNT)) with high shear speed homogenizer followed by hand lay-up fabrication technique. The effect of adding nanoclay on the tensile, flexural, and impact properties of the hybrid nanocomposites were studied. Fractography of tensile-fractured sample of hybrid composites was studied by field emission scanning electron microscope. The dynamic mechanical analyzer was used to study the viscoelastic properties of the hybrid nanocomposites. BK/E-OMMT exhibit enhanced mechanical properties compared to the other hybrid nanocomposites, with tensile, flexural, and impact strength values of 55.82 MPa, 105 MPa, and 65.68 J/m, respectively. Statistical analysis and grouping information were performed by one-way ANOVA (analysis of variance) and Tukey method, and it corroborates that the mechanical properties of the nanoclay-filled hybrid nanocomposites are statistically significant. The storage modulus of the hybrid nanocomposites was improved by 98.4%, 41.5%, and 21.7% with the addition of OMMT, MMT, and HNT, respectively. Morphology of the tensile fracture BK/E-OMMT composites shows that lesser voids, microcracks and fibers pull out due to strong fiber-matrix adhesion compared to other hybrid composites. Hence, the OMMT-filled BK/E hybrid nanocomposites can be utilized for load-bearing structure applications, such as floor panels and seatbacks, whereby lightweight and high strength are the main requirements.
Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
The current study presents about the effect of cellulose nanofibers (CNFs) filler on the thermal and dynamic mechanical analysis (DMA) of epoxy composites as a function of temperature. In this study hand lay-up method was used to fabricate CNF reinforced Epoxy nanocomposites with CNF loading of 0.5%, 0.75%, and 1% into epoxy resin. The obtained thermal and DMA results illustrates that thermal stability, char content, storage modulus (E'), loss modulus (E") and glass transition temperature (Tg) increases for all CNF/epoxy nanocomposites compared to the pure epoxy. Thermal results revealed that 0.75% offers superior resistance or stability towards heat compared to its counterparts. In addition, 0.75% CNF/epoxy nanocomposites confers highest value of storage modulus as compared to 0.5% and 1% filler loading. Hence, it is concluded that 0.75% CNFs loading is the minimal to enhance both thermal and dynamic mechanical properties of the epoxy composites and can be utilized for advance material applications where thermal stability along with renewability are prime requirements.
The current study is motivated by the strict environmental regulations regarding the utilization and consumption of ecofriendly materials. In this context, the aim of this study has been to prepare and characterize different date palm tree (Phoenix dactylifera L.) fibers processed through the conventional water retting method. The chemical, elemental, crystallinity, thermal and morphological characterization of trunk (DPTRF), leaf stalk (DPLST), sheath or leaf sheath (DPLSH) and fruit bunch stalk (DPFBS) fibers was carried out. Chemical analysis revealed that the four types of date palm fibers display noteworthy differences in the content of cellulose, hemicellulose and lignin. Also, the amount of calcium is relatively high in all the date palm fibers; besides this, DPTRF exhibited 69.2% crystallinity, which is lower than that of DPLSH with 72.4% crystallinity. Moreover, DPLST and DPFBS fibers are more thermally stable (higher thermal degradation temperature) than DPTRF and DPLSH samples. Morphological analysis revealed that the fracture surface of DPFBS was relatively rougher, which would probably lead to increased bonding strength with polymers in composites. Overall, we conclude that DPFBS would be promising alternative sustainable and biomass material for the isolation of respective cellulose nanofibers and cellulose nanocrystals as potential reinforcement in polymer composites.
We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.