Displaying all 3 publications

Abstract:
Sort:
  1. Assiry AA, Ahmed N, Almuaddi A, Saif A, Alshahrani MA, Mohamed RN, et al.
    Food Sci Nutr, 2023 Aug;11(8):4853-4860.
    PMID: 37576053 DOI: 10.1002/fsn3.3462
    Antibiotic resistance is rising across the world. For a very long time, bitter ginger (Zingiber zerumbet) has been used as one of the most popular herbal remedies to treat a wide range of common diseases. Ginger has been shown to have antioxidant and antibacterial activity. It has various bioactive chemicals that might be utilized as an alternative treatment option for many infectious diseases. The present study aimed to examine the biochemical profile of ginger, antioxidant, and antibacterial activity against selective endodontic microbes. Antioxidant was measured using DPPH and antibacterial activity was performed using disk diffusion tests. Streptococcus mutants, Enterococcus faecalis, Staphylococcus spp., and Lactobacillus spp. were tested for antibacterial activity. Before evaluating the dried extracts, all solvents were eliminated using rotary evaporation. The obtained IC50 value revealed that ethanol extract had the greatest antioxidant activity. Concerning each bacterium, the plant extracts demonstrated considerable antibacterial activity (p = .001). Ethanol extracts showed the strongest antibacterial activity against the studied microorganisms. This study highlights that the Zingiber zerumbet (Z. zerumbet) is a strong antibacterial herb against multidrug-resistant (MDR) gram-positive bacteria. It may also be employed as a possible natural antioxidant source.
  2. Ahmed MA, Deshmukh GY, Zaidi RH, Saif A, Alshahrani MA, Wazid SW, et al.
    PMID: 35096656 DOI: 10.3389/fcimb.2021.810398
    Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%-90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.
  3. Yong SJ, Halim A, Liu S, Halim M, Alshehri AA, Alshahrani MA, et al.
    Auton Neurosci, 2023 Dec;250:103132.
    PMID: 38000119 DOI: 10.1016/j.autneu.2023.103132
    PURPOSE: To address recent concerns of postural orthostatic tachycardia syndrome (POTS) occurring after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) vaccination.

    METHODS: We searched PubMed, Web of Science, and Scopus as of 1st June 2023. We performed a systematic review and meta-analysis of pooled POTS rate in SARS-CoV-2-infected and COVID-19-vaccinated groups from epidemiological studies, followed by subgroup analyses by characteristic. Meta-analysis of risk ratio was conducted to compare POTS rate in infected versus uninfected groups. Meta-analysis of demographics was also performed to compare cases of post-infection and post-vaccination POTS from case reports and series.

    RESULTS: We estimated the pooled POTS rate of 107.75 (95 % CI: 9.73 to 273.52) and 3.94 (95 % CI: 0 to 16.39) cases per 10,000 (i.e., 1.08 % and 0.039 %) in infected and vaccinated individuals based on 5 and 2 studies, respectively. Meta-regression revealed age as a significant variable influencing 86.2 % variance of the pooled POTS rate in infected population (P 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links