Displaying all 3 publications

Abstract:
Sort:
  1. Alsrhani A, Elderdery AY, Alzahrani B, Alzerwi NAN, Althobiti MM, Rayzah M, et al.
    Molecules, 2023 Apr 04;28(7).
    PMID: 37049991 DOI: 10.3390/molecules28073228
    Breast cancer is among the most recurrent malignancies, and its prevalence is rising. With only a few treatment options available, there is an immediate need to search for better alternatives. In this regard, nanotechnology has been applied to develop potential chemotherapeutic techniques, particularly for cancer therapy. Specifically, albumin-based nanoparticles are a developing platform for the administration of diverse chemotherapy drugs owing to their biocompatibility and non-toxicity. Visnagin, a naturally derived furanochromone, treats cancers, epilepsy, angina, coughs, and inflammatory illnesses. In the current study, the synthesis and characterization of albumin visnagin (AV) nanoparticles (NPs) using a variety of techniques such as transmission electron microscopy, UV-visible, Fourier transform infrared, energy dispersive X-ray composition analysis, field emission scanning electron microscopy, photoluminescence, X-Ray diffraction, and dynamic light scattering analyses have been carried out. The MTT test, dual AO/EB, DCFH-DA, Annexin-V-FITC/PI, Propidium iodide staining techniques as well as analysis of apoptotic proteins, antioxidant enzymes, and PI3K/Akt/mTOR signaling analysis was performed to examine the NPs' efficacy to suppress MDA-MB-468 cell lines. The NPs decreased cell viability increased the amount of ROS in the cells, disrupted membrane integrity, decreased the level of antioxidant enzymes, induced cell cycle arrest, and activated the PI3K/Akt/mTOR signaling cascade, ultimately leading to cell death. Thus, AV NPs possesses huge potential to be employed as a strong anticancer therapy alternative.
  2. Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Elkhalifa AME, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125054.
    PMID: 37245766 DOI: 10.1016/j.ijbiomac.2023.125054
    The present study investigated the cytotoxicity and proapoptotic properties of iron oxide-sodium-alginate-thymoquinone nanocomposites against breast cancer MDA-MB-231 cells in vitro and in silico. This study used chemical synthesis to formulate the nanocomposite. Electron microscopies such as scanning (SEM) and transmission (TEM), Fourier transform infrared (FT-IR), Ultraviolet-Visible, Photoluminescence spectroscopy, selected area (electron) diffraction (SAED), energy dispersive X-ray analysis (EDX), and X-ray diffraction studies (XRD) were used to characterize the synthesized ISAT-NCs and the average size of them was found to be 55 nm. To evaluate the cytotoxic, antiproliferative, and apoptotic potentials of ISAT-NCs on MDA-MB-231 cells, MTT assays, FACS-based cell cycle studies, annexin-V-PI staining, ELISA, and qRT-PCR were used. PI3K-Akt-mTOR receptors and thymoquinone were predicted using in-silico docking studies. Cell proliferation is reduced in MDA-MB-231 cells due to ISAT-NC cytotoxicity. As a result of FACS analysis, ISAT-NCs had nuclear damage, ROS production, and elevated annexin-V levels, which resulted in cell cycle arrest in the S phase. The ISAT-NCs in MDA-MB-231 cells were found to downregulate PI3K-Akt-mTOR regulatory pathways in the presence of inhibitors of PI3K-Akt-mTOR, showing that these regulatory pathways are involved in apoptotic cell death. We also predicted the molecular interaction between thymoquinone and PI3K-Akt-mTOR receptor proteins using in-silico docking studies which also support PI3K-Akt-mTOR signaling inhibition by ISAT-NCs in MDA-MB-231 cells. As a result of this study, we can conclude that ISAT-NCs inhibit the PI3K-Akt-mTOR pathway in breast cancer cell lines, causing apoptotic cell death.
  3. Elderdery AY, Alhamidi AH, Elkhalifa AME, Althobiti MM, Eltayeb Omer N, Alsugoor MH, et al.
    Nanomaterials (Basel), 2022 Oct 26;12(21).
    PMID: 36364538 DOI: 10.3390/nano12213753
    Nanocomposites comprised of CuO-TiO2-chitosan-escin, which has adjustable physicochemical properties, provide a solution for therapeutic selectivity in cancer treatment. By controlling the intrinsic signaling primarily through the mitochondrial signaling pathway, we desired nanocomposites with enhanced anticancer activity by containing CuO-TiO2-chitosan-escin. The metal oxides CuO and TiO2, the natural polymer chitosan, and a phytochemical compound escin were combined to form CuO-TiO2-chitosan-escin nanocomposites. The synthesized nanocomposites were confirmed and characterized using FTIR spectroscopy, TEM, and UV-Vis absorption spectroscopy. A human leukemia cell line (MOLT-4) was used to assess the efficacy and selectivity of nanocomposites. Based on a cytotoxicity study, CuO-TiO2-chitosan-escin nanocomposites had inhibition concentrations (IC50) of 13.68, 8.9, and 7.14 µg/mL against human T lymphoblast cells after 24, 48, and 72 h of incubation, respectively. Compared with untreated MOLT-4 cells, CuO-TiO2-chitosan-escin nanocomposite-treated cells significantly increased (p < 0.05) caspase-3, -8, and -9 and decreased the levels of antioxidant enzymes GR, SOD, and GSH. Furthermore, MDA for lipid peroxidase and ROS levels significantly increased (p < 0.05) in the treated cells than in the untreated cells. Remarkably, CuO-TiO2-chitosan-escin nanocomposite-mediated control of cell cycles were mainly achieved through the activation of caspase-3, -8, and -9.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links