Displaying all 3 publications

Abstract:
Sort:
  1. Alvankarian J, Majlis BY
    PLoS One, 2015;10(3):e0119658.
    PMID: 25747514 DOI: 10.1371/journal.pone.0119658
    Rapid prototyping (RP) of microfluidic channels in liquid photopolymers using standard lithography (SL) involves multiple deposition steps and curing by ultraviolet (UV) light for the construction of a microstructure layer. In this work, the conflicting effect of oxygen diffusion and UV curing of liquid polyurethane methacrylate (PUMA) is investigated in microfabrication and utilized to reduce the deposition steps and to obtain a monolithic product. The conventional fabrication process is altered to control for the best use of the oxygen presence in polymerization. A novel and modified lithography technique is introduced in which a single step of PUMA coating and two steps of UV exposure are used to create a microchannel. The first exposure is maskless and incorporates oxygen diffusion into PUMA for inhibition of the polymerization of a thin layer from the top surface while the UV rays penetrate the photopolymer. The second exposure is for transferring the patterns of the microfluidic channels from the contact photomask onto the uncured material. The UV curing of PUMA as the main substrate in the presence of oxygen is characterized analytically and experimentally. A few typical elastomeric microstructures are manufactured. It is demonstrated that the obtained heights of the fabricated structures in PUMA are associated with the oxygen concentration and the UV dose. The proposed technique is promising for the RP of molds and microfluidic channels in terms of shorter processing time, fewer fabrication steps and creation of microstructure layers with higher integrity.
  2. Alvankarian J, Majlis BY
    Sensors (Basel), 2015 Nov 24;15(11):29685-701.
    PMID: 26610519 DOI: 10.3390/s151129685
    The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process.
  3. Alvankarian J, Bahadorimehr A, Yeop Majlis B
    Biomicrofluidics, 2013;7(1):14102.
    PMID: 24403994 DOI: 10.1063/1.4774068
    Our goal is to design, fabricate, and characterize a pillar-based microfluidic device for size-based separation of human blood cells on an elastomeric substrate with application in the low-cost rapid prototyping of lab-chip devices. The single inlet single outlet device is using parallel U-shape arrays of pillars with cutoff size of 5.5 μm for trapping white blood cells (WBCs) in a pillar chamber with internal dead-volume of less than 1.0 μl. The microstructures are designed to limit the elastomeric deformation against fluid pressures. Numerical analysis showed that at maximum pressure loss of 15 kPa which is lower than the device conformal bonding strength, the pillar elastomeric deformation is less than 5% for flow rates of up to 1.0 ml min(-1). Molding technique was employed for device prototyping using polyurethane methacrylate (PUMA) resin and polydimethylsiloxane (PDMS) mold. Characterization of the dual-layer device with beads and blood samples is performed. Tests with blood injection showed that ∼18%-25% of WBCs are trapped and ∼84%-89% of red blood cells (RBCs) are passed at flow rates of 15-50 μl min(-1) with a slight decrease of WBCs trap and improve of the RBCs pass at higher flow rates. Similar results were obtained by separation of mixed microspheres of different size injected at flow rates of up to 400 μl min(-1). Tests with blood samples stained by fluorescent gel demonstrated that the WBCs are accumulated in the arrays of pillars that later end up to blockage of the device. Filtration results of using elastomeric substrate present a good consistency with the trend of separation efficiencies of the similar silicon-based filters.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links