Displaying all 3 publications

Abstract:
Sort:
  1. Dabbagh R, Jamal A, Bhuiyan Masud JH, Titi MA, Amer YS, Khayat A, et al.
    Cureus, 2023 May;15(5):e38373.
    PMID: 37265897 DOI: 10.7759/cureus.38373
    During the early phase of the COVID-19 pandemic, reverse transcriptase-polymerase chain reaction (RT-PCR) testing faced limitations, prompting the exploration of machine learning (ML) alternatives for diagnosis and prognosis. Providing a comprehensive appraisal of such decision support systems and their use in COVID-19 management can aid the medical community in making informed decisions during the risk assessment of their patients, especially in low-resource settings. Therefore, the objective of this study was to systematically review the studies that predicted the diagnosis of COVID-19 or the severity of the disease using ML. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), we conducted a literature search of MEDLINE (OVID), Scopus, EMBASE, and IEEE Xplore from January 1 to June 31, 2020. The outcomes were COVID-19 diagnosis or prognostic measures such as death, need for mechanical ventilation, admission, and acute respiratory distress syndrome. We included peer-reviewed observational studies, clinical trials, research letters, case series, and reports. We extracted data about the study's country, setting, sample size, data source, dataset, diagnostic or prognostic outcomes, prediction measures, type of ML model, and measures of diagnostic accuracy. Bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO), with the number CRD42020197109. The final records included for data extraction were 66. Forty-three (64%) studies used secondary data. The majority of studies were from Chinese authors (30%). Most of the literature (79%) relied on chest imaging for prediction, while the remainder used various laboratory indicators, including hematological, biochemical, and immunological markers. Thirteen studies explored predicting COVID-19 severity, while the rest predicted diagnosis. Seventy percent of the articles used deep learning models, while 30% used traditional ML algorithms. Most studies reported high sensitivity, specificity, and accuracy for the ML models (exceeding 90%). The overall concern about the risk of bias was "unclear" in 56% of the studies. This was mainly due to concerns about selection bias. ML may help identify COVID-19 patients in the early phase of the pandemic, particularly in the context of chest imaging. Although these studies reflect that these ML models exhibit high accuracy, the novelty of these models and the biases in dataset selection make using them as a replacement for the clinicians' cognitive decision-making questionable. Continued research is needed to enhance the robustness and reliability of ML systems in COVID-19 diagnosis and prognosis.
  2. James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, et al.
    Inj Prev, 2020 Oct;26(Supp 1):i125-i153.
    PMID: 32839249 DOI: 10.1136/injuryprev-2019-043531
    BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria.

    METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.

    RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.

    CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.

  3. James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, et al.
    Inj Prev, 2020 10;26(Supp 1):i96-i114.
    PMID: 32332142 DOI: 10.1136/injuryprev-2019-043494
    BACKGROUND: Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries.

    METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).

    FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).

    INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links