Displaying all 2 publications

Abstract:
Sort:
  1. Al Zand AW, Ali MM, Al-Ameri R, Badaruzzaman WHW, Tawfeeq WM, Hosseinpour E, et al.
    Materials (Basel), 2021 Oct 23;14(21).
    PMID: 34771860 DOI: 10.3390/ma14216334
    The flexural strength of Slender steel tube sections is known to achieve significant improvements upon being filled with concrete material; however, this section is more likely to fail due to buckling under compression stresses. This study investigates the flexural behavior of a Slender steel tube beam that was produced by connecting two pieces of C-sections and was filled with recycled-aggregate concrete materials (CFST beam). The C-section's lips behaved as internal stiffeners for the CFST beam's cross-section. A static flexural test was conducted on five large scale specimens, including one specimen that was tested without concrete material (hollow specimen). The ABAQUS software was also employed for the simulation and non-linear analysis of an additional 20 CFST models in order to further investigate the effects of varied parameters that were not tested experimentally. The numerical model was able to adequately verify the flexural behavior and failure mode of the corresponding tested specimen, with an overestimation of the flexural strength capacity of about 3.1%. Generally, the study confirmed the validity of using the tubular C-sections in the CFST beam concept, and their lips (internal stiffeners) led to significant improvements in the flexural strength, stiffness, and energy absorption index. Moreover, a new analytical method was developed to specifically predict the bending (flexural) strength capacity of the internally stiffened CFST beams with steel stiffeners, which was well-aligned with the results derived from the current investigation and with those obtained by others.
  2. Band SS, Ameri R, Qasem SN, Mehdizadeh S, Gupta BB, Pai HT, et al.
    Heliyon, 2025 Jan 15;11(1):e41026.
    PMID: 39801963 DOI: 10.1016/j.heliyon.2024.e41026
    Global adoption of wind energy continues to increase, while improving the efficiency of turbine settings requires reliable wind speed (WS) models. The latest models rely on artificial intelligence (AI) optimizations which constructs tests on a range of novel hybrid models to examine the reliability. Gradient Boosting (GB), Random Forest (RF), and Long Short-Term Memory (LSTM) are used in new combinations for data pre-processing. A Time Varying Filter-based Empirical Mode Decomposition (TVFEMD) model is coupled with the GB and LSTM standalone models, to create TVFEMD-GB and TVFEMD-LSTM hybrids, which are run in competition with each other. Eventually, a preferred hybrid form is established, simultaneous hybridization of TVFEMD with GB and LSTM. This study is the first to hybridize these fundamental systems, and create a TVFEMD-GB-LSTM model that can forecast WS. This study finds that the novel hybrid models exhibit superior performance to standalone GB and LSTM models, opening the pathway to alternative WS prediction techniques.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links