In this work, the potential of titanium dioxide nanoparticles incorporated gellan gum (GG + TiO2-NPs) biofilm as wound dressing material was investigated. The GG + TiO2-NPs biofilm was prepared via evaporative casting technique and was characterized using FTIR, XRD, and SEM to study their physiochemical properties. The mechanical properties, swelling and water vapor transmission rate (WVTR) of biofilm was determined to comply with an ideal wound dressing material. In vitro and in vivo wound healing studies was carried out to evaluate the performance of GG + TiO2-NPs biofilm. In vitro wound healing was studied on 3 T3 mouse fibroblast cells for cell viability, cell proliferation, and scratch assay. The acridine orange/propidium iodide (AO/PI) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the viability of cell and cell proliferation. Cell migration assay was analyzed using Essen BioScience IncuCyteTM Zoom system. In vivo wound healing via open excision wounds model on Sprague Dawley rat was studied within 14 days. The FT-IR spectra of GG + TiO2-NPs biofilm show main bands assigned to OH stretching, OH deformation, and TiO stretching modes. XRD pattern of GG + TiO2-NPs biofilm suggesting that TiO2-NPs was successfully incorporated in biofilm and well distributed on the surface as proved by SEM analysis. The GG + TiO2-NPs biofilm shows higher mechanical strength and swelling (3.76 ± 0.11 MPa and 1061 ± 6%) as compared to pure GG film (3.32 ± 0.08 Mpa and 902 ± 6%), respectively. GG + TiO2-NPs biofilm shows good antibacterial properties as 9 ± 0.25 mm and 11 ± 0.06 mm exhibition zone was observed against Staphylococcus aureus and Escherichia coli bacteria, respectively. While no exhibition zone was obtained for pure GG biofilm. GG + TiO2-NPs biofilm also demonstrated better cell-to-cell interaction properties, as it's promoted cell proliferation and cell migration to accelerate open excision wound healing on Sprague Dawley rat. The wound treated with GG + TiO2-NPs biofilm was healed within 14 days, on the other hand, the wound is still can be seen when it was treated with GG. However, GG and GG + TiO2-NPs biofilm show no cytotoxicity effects on mouse fibroblast cells.
Gellan gum incorporating titanium dioxide nanoparticles biofilm was synthesized and characterized using UV, FTIR and XRD to study their physical and chemical properties. The mechanical properties were measured using universal mechanical testing. Meanwhile, the biological properties were investigated towards for antibacterial and cell proliferation. This comprehensive data are relevant with the research article entitled "Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: Physicochemical, mechanical, antibacterial properties and wound healing studies" [1].
The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.
The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young's modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332-391 g m-2 d-1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague-Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.