MATERIALS AND METHODS: The testes were dissected out and fixed in 10% buffered formalin solution for 11 h, dehydrated in 70% alcohol and lastly placed in tissue processor for 18±1 h at 60°C. The tissues blocks were cut at the thickness of 4 μm on a rotary microtome. Stained tissues were taken under Advance Microscope (Nikon Eclipse 80i Nomarski DIC). Collected data were analyzed using Microsoft Excel 2013. Data were presented as mean±standard deviation. Statistical analyses were done using one-way ANOVA using SPSS (Version 22).
RESULTS: These lobules of mature P. polyphagus were formed via different germinative lineage cells such as spermatogonia, spermatocytes, spermatids and spermatozoa. The histological characteristics of testes showed that the process of spermatogenesis went through the stages of four testes maturation which were spermatogonia I and II, spermatocytes I and II, spermatids and spermatozoa stages within different body weight of P. polyphagus. It was found that there were significant difference between body weight and carapace length to the testicular maturation stages (one-way ANOVA and p = 0.000).
CONCLUSION: The results of this experiment indicated that males P. polyphagus have four stages of testes maturation and can be considered to have fully mature testes that ready for fertilization at 452 g body weight (BW) and 107 mm carapace length (CL) or more.
OBJECTIVE: This study was carried out to determine the comparison between carapace width and growth band count of S. olivacea in Malaysia.
MATERIALS AND METHODS: Samples were collected from Setiu Wetlands, Terengganu, Malaysia from February until August, 2016. Samples were categorized based on their morphological measurements. The mesocardiac and zygocardiac ossicles in the gastric mill of S. olivacea was dissected out and preserved in solutions and underwent a cross sectioning process. A total of 76 of wild S. olivacea ranging from 6.56 to 12.84 cm in carapace width were analysed. The growth band counts were examined for each individual and ranging from 1 to 3 band counts.
RESULTS: A positive linear relation was observed between CW and GBC with r2 = 0.5178, p<0.01. Overall, there was a strong, positive correlation between CW and GBC. Increase in CW were correlated with increases in GBC respectively for this species.
CONCLUSION: Therefore, the carapace width, growth band counts and body weight can be used to improve data on growth, recruitment, maturation and mortality. Thus, this study would able to improve new ageing technique and contribute greatly to improve the conservation and management of S. olivacea in Setiu Wetlands, Terengganu, Malaysia.