Displaying all 7 publications

Abstract:
Sort:
  1. Sendi H, Mohamed MT, Anwar MP, Saud HM
    ScientificWorldJournal, 2013;2013:258562.
    PMID: 24106452 DOI: 10.1155/2013/258562
    Peat moss (PM) is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW) for Kai-lan (Brassica oleracea var. Alboglabra) production replacing peat moss (PM) in growth media. The treatments evaluated were 100% PM (control), 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v) with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC) of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100%) and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.
  2. Anwar MP, Juraimi AS, Samedani B, Puteh A, Man A
    ScientificWorldJournal, 2012;2012:603043.
    PMID: 22778701 DOI: 10.1100/2012/603043
    Critical period of weed control is the foundation of integrated weed management and, hence, can be considered the first step to design weed control strategy. To determine critical period of weed control of aerobic rice, field trials were conducted during 2010/2011 at Universiti Putra Malaysia. A quantitative series of treatments comprising two components, (a) increasing duration of weed interference and (b) increasing length of weed-free period, were imposed. Critical period was determined through Logistic and Gompertz equations. Critical period varied between seasons; in main season, it started earlier and lasted longer, as compared to off-season. The onset of the critical period was found relatively stable between seasons, while the end was more variable. Critical period was determined as 7-49 days after seeding in off-season and 7-53 days in main season to achieve 95% of weed-free yield, and 23-40 days in off-season and 21-43 days in main season to achieve 90% of weed-free yield. Since 5% yield loss level is not practical from economic view point, a 10% yield loss may be considered excellent from economic view point. Therefore, aerobic rice should be kept weed-free during 21-43 days for better yield and higher economic return.
  3. Samedani B, Juraimi AS, Rafii MY, Anuar AR, Sheikh Awadz SA, Anwar MP
    ScientificWorldJournal, 2013;2013:695404.
    PMID: 24260020 DOI: 10.1155/2013/695404
    This study investigated the allelopathic effect of Axonopus compressus litter on Asystasia gangetica and Pennisetum polystachion. In experiment 1 the bioassays with 0, 10, 30, and 50 g L⁻¹ of aqueous A. compressus litter leachate were conducted. Experiment 2 was carried out by incorporating 0, 10, 20, 30, 40, and 50 g L⁻¹ of A. compressus litter leachate into soil. In experiment 3, the fate of A. compressus litter leachate phenolics in the soil was investigated. A. compressus leachates did not affect the germination percentage of A. gangetica and P. polystachion, but delayed germination of A. gangetica seeds and decreased seed germination time of P. polystachion. A. compressus litter leachates affected weeds hypocotyl length. Hypocotyl length reductions of 18 and 31% were observed at the highest concentration (50 g L⁻¹) compared to the control in A. gangetica and P. polystachion, respectively. When concentration of A. compressus litter leachate-amended soil increased A. gangetica and P. polystachion seedling shoot length, root length, seedling weight and chlorophyll concentration were not affected. The 5-week decomposition study of A. compressus showed that the phenolic compounds in A. compressus litter abruptly decreased about 52% after two weeks and remained steady until the end of the incubation.
  4. Samedani B, Juraimi AS, Anwar MP, Rafii MY, Sheikh Awadz SH, Anuar AR
    ScientificWorldJournal, 2013;2013:308646.
    PMID: 24163618 DOI: 10.1155/2013/308646
    Axonopus compressus is one of the native soft grass species in oil palm in Malaysia which can be used as a cover crop. The competitive ability of A. compressus to overcome A. gangetica was studied using multiple-density, multiple-proportion replacements series under a glasshouse and full sunlight conditions in a poly bag for 10 weeks. A. compressus produced more dry weight and leaf area when competing against A. gangetica than in monoculture at both densities in the full sunlight and at high density in the shade. Moreover, the relative yield and relative crowding coefficients also indicated A. compressus is a stronger competitor than A. gangetica at both densities in the full sunlight and high density in the shade. It seemed that A. gangetica plants in the shade did not compete with each other and were more competitive against A. compressus as could influence A. compressus height in the shade. It is concluded that although suppression of A. gangetica by A. compressus occurred under full sunlight, irrespective of plant density, this ability reduced under shade as A. compressus density decreased. The result suggests that A. compressus in high density could be considered as a candidate for cover crops under oil palm canopy.
  5. Anwar MP, Juraimi AS, Mohamed MT, Uddin MK, Samedani B, Puteh A, et al.
    ScientificWorldJournal, 2013;2013:916408.
    PMID: 24223513 DOI: 10.1155/2013/916408
    Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point.
  6. Bashar HMK, Juraimi AS, Ahmad-Hamdani MS, Uddin MK, Asib N, Anwar MP, et al.
    PLoS One, 2023;18(1):e0280159.
    PMID: 36608038 DOI: 10.1371/journal.pone.0280159
    Herbicides made from natural molecules are cost-effective and environmentally friendly alternatives to synthetic chemical herbicides for controlling weeds in the crop field. In this context, an investigation was carried out to ascertain the allelopathic potential of Parthenium hysterophorus L. as well as to identify its phenolic components which are responsible for the allelopathic effect. During the observation, the rate of germination and seedlings' growth of Vigna subterranea (L.) Verdc, Raphanus sativus (L.) Domin, Cucurbita maxima Duchesne., Cucumis sativus L., Solanum lycopersicum L., Capsicum frutescens L., Zea mays L., Abelmoschus esculentus (L.) Moench, Daucus carota L., Digitaria sanguinalis (L.) Scop and Eleusine indica (L.) Gaertn were investigated by using methanol extracts, isolated from leaf, stem and flower of P. hysterophorus. Six concentrations (i.e., 25, 50, 75, 100, and 150 g L-1) of methanol extracts were isolated from P. hysterophorus leaf, stem and flower were compared to the control (distilled water). It was also observed that the concentration of methanol extracts (isolated from P. hysterophorus leaf, stem, and flower) while increased, the rate of seed germination and seedling growth of both selected crops and weeds decreased drastically, indicating that these methanol extracts have allelopathic potential. The allelopathic potential of P. hysterophorus leaf extraction (811) was found higher than the extraction of the stem (1554) and flower (1109), which is confirmed by EC50 values. The principal component analysis (PCA) was also used to re-validate the allelopathic potentiality of these methanol extracts and confirmed that Raphanus sativus, Solanum lycopersicum, Capsicum frutescens, Abelmoschus esculentus, Daucus carota, Digitaria sanguinalis, and Eleusine indica were highly susceptible to allelochemicals of P. hysterophorus. Besides these, the LC-MS analysis also revealed that the P. hysterophorus leaf extract contained 7 phenolic compounds which were responsible for the inhibition of tested crops and weeds through allelopathic effect. The results of the current study revealed that the leaf of P. hysterophorus is a major source of allelopathic potential on crops and weeds and which could be used as a valuable natural herbicide in the future for the sustainability of crop production through controlling weeds.
  7. Bashar HMK, Juraimi AS, Ahmad-Hamdani MS, Uddin MK, Asib N, Anwar MP, et al.
    Plants (Basel), 2022 Nov 23;11(23).
    PMID: 36501249 DOI: 10.3390/plants11233209
    This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna subterranean L.) and maize (Zea mays L.), and six different types of weed e.g., Digitaria sanguinalis, Eleusine indica, Ageratum conyzoides, Cyperus iria, Euphorbia hirta, and Cyperus difformis. The parthenium methanolic leaf extracts at 25, 50, 75, and 100 g L-1 were sprayed in the test crops and weeds to assess their physiological and biochemical reactions after 6, 24, 48, and 72 h of spraying these compounds (HAS). The LC-MS analysis confirmed seven types of phytochemicals (caffeic acid, ferulic acid, vanillic acid, parthenin, chlorogenic acid, quinic acid, and p-anisic acid) in the parthenium leaf extract that were responsible for the inhibition of tested crops and weeds. From the HPLC analysis, higher amounts in leaf methanol extracts (40,752.52 ppm) than those of the stem (2664.09 ppm) and flower extracts (30,454.33 ppm) were recorded. Parthenium leaf extract at 100 g L-1 had observed higher phytotoxicity on all weed species except C. difformis. However, all crops were found safe under this dose of extraction. Although both crops were also affected to some extent, they could recover from the stress after a few days. The photosynthetic rate, transpiration rate, stomatal conductance, carotenoid and chlorophyll content were decreased due to the application of parthenium leaf extract. However, when parthenium leaf extract was applied at 100 g L-1 for 72 h, the malondialdehyde (MDA) and proline content were increased in all weeds. Enzymatic antioxidant activity (e.g., superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contents) were also elevated as a result of the sprayed parthenium leaf extract. The negative impact of physiological and biochemical responses as a consequence of the parthenium leaf extract led the weed species to be stressed and finally killed. The current findings show the feasibility of developing bioherbicide from the methanolic extract of parthenium leaf for controlling weeds, which will be cost-effective, sustainable, and environment friendly for crop production during the future changing climate.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links