METHODS AND RESULTS: Ag-NPs were synthesized using a chemical reduction method and characterized with respect to their surface plasmon resonance, surface morphology via transmission electron microscopy (TEM) and dynamic light scattering (DLS). The bacterial surface was targeted using 20 nm Ag-NPs conjugated with an anti-protein A antibody. Labelled bacteria were irradiated with blue visible laser at 2·04 W/cm2 . The antibacterial activity of functionalized Ag-NPs was investigated by fluorescence microscopy after irradiation, and morphological changes in S. aureus after laser treatment were assessed using scanning electron microscopy (SEM). The laser-irradiated, functionalized Ag-NPs exhibited significant bactericidal activity, and laser-induced bacterial damage was observed after 10 min of laser irradiation against S. aureus. The fluorescence microscopic analysis results supported that bacterial cell death occurred in the presence of the functionalized Ag-NPs.
CONCLUSIONS: The results of this study suggest that a novel method for the preparation of functionalized nanoparticles has potential as a potent antibacterial agent for the selective killing of resistant disease-causing bacteria.
SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that Ag-NPs functionalized with a specific antibody, could be used in combination with laser radiation as a novel treatment to target resistant bacterial and fungal pathogens with minimal impact on normal microflora.
Methods: In this study, a total of 42 swab samples were collected from the surface of various fitness equipment such as back machines, exercise mats, dip stations, dumbbells, and treadmills. Identification of the bacterial isolates was conducted using biochemical tests and further analysed molecularly using the PCR method targeting nuc gene (270 bp). The nuc gene encodes for the thermonuclease enzyme, a virulent factor of S. aureus.
Results: The findings showed 31 out of 42 swab samples (73.81%) were positive with S. aureus.
Conclusion: This study showed that gymnasium equipment is a potential reservoir for S. aureus and might play an important role in transmitting the pathogen to humans.
Objective: This study was undertaken to assess the presence of S. aureus on the surface of fitness equipment from selected gymnasiums in Kuching and Kota Samarahan, Sarawak (Malaysia).