Displaying all 3 publications

Abstract:
Sort:
  1. Ali MY, Shahrier M, Kafy AA, Ara I, Javed A, Fattah MA, et al.
    Heliyon, 2023 Mar;9(3):e14505.
    PMID: 36967923 DOI: 10.1016/j.heliyon.2023.e14505
    Tobacco farming in Bangladesh has significant and far-reaching environmental impacts, affecting the land, water, and air. While the country has implemented tobacco control measures, the lack of monitoring and enforcement has resulted in environmental degradation and public health concerns. This study aims to document the environmental impact of tobacco farming in Bangladesh, adopting a qualitative approach to collect and analyze data. The study used focus group discussions, key informant interviews, and a structured questionnaire survey to gather data, assessing the impact of tobacco farming on the environment, socioeconomic conditions, and human health using a five-point impact assessment scale. Results illustrated that tobacco cultivation contributes to the ecosystem and natural resource degradation, leading to a loss of habitat diversity and domestic animal death. Soil erosion, water pollution, and air pollution from excessive plowing and pesticide usage have also been observed, causing skin diseases and other health issues. Despite some economic benefits, social conditions have worsened due to drug addiction and conflicts among tobacco workers. The study will help policymakers and environmentalists by highlighting the need to take action in reducing the environmental and social impacts of tobacco farming in Bangladesh. It also informs the public about the potential tobacco production and consumption risks. This study provides important insights into the adverse effects of tobacco farming in Bangladesh and emphasizes the importance of implementing appropriate measures to reduce environmental and public health impacts.
  2. Faisal MAA, Chowdhury MEH, Khandakar A, Hossain MS, Alhatou M, Mahmud S, et al.
    Comput Biol Med, 2022 Mar;142:105184.
    PMID: 35016098 DOI: 10.1016/j.compbiomed.2021.105184
    Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects' walking gait classification for the "Single-task" walking scenarios. We have also got fairly good accuracy for the "Dual-task" walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses.
  3. Haque F, Reaz MBI, Chowdhury MEH, Shapiai MIB, Malik RA, Alhatou M, et al.
    Diagnostics (Basel), 2023 Jan 11;13(2).
    PMID: 36673074 DOI: 10.3390/diagnostics13020264
    Diabetic sensorimotor polyneuropathy (DSPN) is a serious long-term complication of diabetes, which may lead to foot ulceration and amputation. Among the screening tools for DSPN, the Michigan neuropathy screening instrument (MNSI) is frequently deployed, but it lacks a straightforward rating of severity. A DSPN severity grading system has been built and simulated for the MNSI, utilizing longitudinal data captured over 19 years from the Epidemiology of Diabetes Interventions and Complications (EDIC) trial. Machine learning algorithms were used to establish the MNSI factors and patient outcomes to characterise the features with the best ability to detect DSPN severity. A nomogram based on multivariable logistic regression was designed, developed and validated. The extra tree model was applied to identify the top seven ranked MNSI features that identified DSPN, namely vibration perception (R), 10-gm filament, previous diabetic neuropathy, vibration perception (L), presence of callus, deformities and fissure. The nomogram's area under the curve (AUC) was 0.9421 and 0.946 for the internal and external datasets, respectively. The probability of DSPN was predicted from the nomogram and a DSPN severity grading system for MNSI was created using the probability score. An independent dataset was used to validate the model's performance. The patients were divided into four different severity levels, i.e., absent, mild, moderate, and severe, with cut-off values of 10.50, 12.70 and 15.00 for a DSPN probability of less than 50, 75 and 100%, respectively. We provide an easy-to-use, straightforward and reproducible approach to determine prognosis in patients with DSPN.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links