Displaying all 3 publications

Abstract:
Sort:
  1. Mojiri A, Ahmad Z, Tajuddin RM, Arshad MF, Gholami A
    Environ Monit Assess, 2017 Jul;189(7):337.
    PMID: 28612336 DOI: 10.1007/s10661-017-6052-x
    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
  2. Mangi SA, Wan Ibrahim MH, Jamaluddin N, Arshad MF, Khahro SH, Putra Jaya R
    PMID: 34165742 DOI: 10.1007/s11356-021-15006-x
    This study investigated the influence of coal bottom ash (CBA) on the concrete properties and evaluate the effects of combined exposure of sulphate and chloride conditions on the concrete containing CBA. During concrete mixing, cement was replaced with CBA by 10% of cement weight. Initially, concrete samples were kept in normal water for 28 days. Next, the specimens were moved to a combined solution of 5% sodium sulphate (Na2SO4) and 5% sodium chloride (NaCl) solution for a further 28 to 180 days. The experimental findings demonstrated that the concrete containing 10% CBA (M2) gives 12% higher compressive strength than the water cured normal concrete (M1). However, when it was exposed to a solution of 5% Na2SO4 and 5% NaCl, gives 0.2% greater compressive strength with reference to M1. The presence of 10% CBA decreases the chloride penetration and drying shrinkage around 33.6% and 29.2% respectively at 180 days. Hence, this study declared 10% CBA as optimum that can be used for future research.
  3. Vishwas S, Kumar R, Khursheed R, Ramanunny AK, Kumar R, Awasthi A, et al.
    Curr Neuropharmacol, 2023;21(7):1558-1574.
    PMID: 35950245 DOI: 10.2174/1570159X20666220810105421
    Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links