Malignant melanoma, primarily a cutaneous malignancy, can also involve mucosal surfaces and constitutes 2% to 7% of all gynecological malignancies. Primary melanoma of the uterine cervix is an uncommon tumor and has poor prognosis. In the female genital tract, the synchronous occurrence of primary malignant melanoma in the cervix and vagina is rare. We report a case of a 48-year-old female patient who presented with a blackish vaginal mass and associated growth in the cervix. Biopsy from the vaginal mass was reported as malignant melanoma. Following this, she underwent radical surgery and adjuvant radiotherapy. After 12 months, the patient is doing well.
Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using the texture feature. The performance of the foreseen approach has been tried in appearing differently in relation to the system against manual examination by a gynaecologist utilizing diverse scales. A total of 100 microscope images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual segmentation method for accurately determining the ROI. We have evaluated the blood leucocytes identification using the ROI texture (LBP Feature). The identification accuracy in the technique used is about 95.3%., with 100 sensitivity and 91.66% specificity.
Examination of the brain's condition with the Electroencephalogram (EEG) can be helpful to predict abnormality and cerebral activities. The purpose of this study was to develop an Automated Diagnostic Tool (ADT) to investigate and classify the EEG signal patterns into normal and schizophrenia classes. The ADT implements a sequence of events, such as EEG series splitting, non-linear features mining, t-test assisted feature selection, classification and validation. The proposed ADT is employed to evaluate a 19-channel EEG signal collected from normal and schizophrenia class volunteers. A dataset was created by splitting the raw 19-channel EEG into a sequence of 6250 sample points, which was helpful to produce 1142 features of normal and schizophrenia class patterns. Non-linear feature extraction was then implemented to mine 157 features from each EEG pattern, from which 14 of the principal features were identified based on significance. Finally, a signal classification practice with Decision-Tree (DT), Linear-Discriminant analysis (LD), k-Nearest-Neighbour (KNN), Probabilistic-Neural-Network (PNN), and Support-Vector-Machine (SVM) with various kernels was implemented. The experimental outcome showed that the SVM with Radial-Basis-Function (SVM-RBF) offered a superior average performance value of 92.91% on the considered EEG dataset, as compared to other classifiers implemented in this work.
Pain intensity classification using facial images is a challenging problem in computer vision research. This work proposed a patch and transfer learning-based model to classify various pain intensities using facial images. The input facial images were segmented into dynamic-sized horizontal patches or "shutter blinds". A lightweight deep network DarkNet19 pre-trained on ImageNet1K was used to generate deep features from the shutter blinds and the undivided resized segmented input facial image. The most discriminative features were selected from these deep features using iterative neighborhood component analysis, which were then fed to a standard shallow fine k-nearest neighbor classifier for classification using tenfold cross-validation. The proposed shutter blinds-based model was trained and tested on datasets derived from two public databases-University of Northern British Columbia-McMaster Shoulder Pain Expression Archive Database and Denver Intensity of Spontaneous Facial Action Database-which both comprised four pain intensity classes that had been labeled by human experts using validated facial action coding system methodology. Our shutter blinds-based classification model attained more than 95% overall accuracy rates on both datasets. The excellent performance suggests that the automated pain intensity classification model can be deployed to assist doctors in the non-verbal detection of pain using facial images in various situations (e.g., non-communicative patients or during surgery). This system can facilitate timely detection and management of pain.