Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
Hazardous industrial wastes negatively impact the environment by creating issues for aquatic as well as human's life. This study investigates the treatment of hazardous industrial wastewater using cost-effective graphite adsorbent along with electrochemical regeneration integrated with renewable solar energy. The synthetic industrial effluent containing crystal violet dye was treated using an adsorbent (Nyex™ 1000) having a surface area of 1.0 m2 g-1 . The efficiency of removing solute was found to be more than 90%. The adsorbent regeneration efficiency was achieved at 99.5% by passing a charge of 100 C g-1 at current density of 10 mA cm-2 for 1 h. Solar energy was integrated with electrochemical reactor for the regeneration of adsorbent to make the system cost-effective and self-sustainable. PRACTITIONER POINTS: Industrial hazardous wastewater treatment with a cost-effective graphite integrated adsorbent. Development of renewable solar energy-integrated with electrochemical system for regeneration. Regeneration efficiency of adsorbent Nyex™ 1000 was achieved around 99.5% with integrated system. Sustainable system was introduced to incorporate with renewable energy for waste water treatment.