Displaying all 2 publications

Abstract:
Sort:
  1. Leong WH, Azella Zaine SN, Ho YC, Uemura Y, Lam MK, Khoo KS, et al.
    J Environ Manage, 2019 Nov 01;249:109384.
    PMID: 31419674 DOI: 10.1016/j.jenvman.2019.109384
    The microalgal-bacterial co-cultivation was adopted as an alternative in making microbial-based biofuel production to be more feasible in considering the economic and environmental prospects. Accordingly, the microalgal-bacterial symbiotic relationship was exploited to enhance the microbial biomass yield, while bioremediating the nitrogen-rich municipal wastewater. An optimized inoculation ratio of microalgae and activated sludge (AS:MA) was predetermined and further optimization was performed in terms of different increment ratios to enhance the bioremediation process. The nitrogen removal was found accelerating with the increase of the increment ratios of inoculated AS:MA, though all the increment ratios had recorded a near complete total nitrogen removal (94-95%). In light of treatment efficiency and lipid production, the increment ratio of 0.5 was hailed as the best microbial population size in accounting the total nitrogen removal efficiency of 94.45%, while not compromising the lipid production of 0.241 g/L. Moreover, the cultures in municipal wastewater had attained higher biomass and lipid productions of 1.42 g/L and 0.242 g/L, respectively, as compared with the synthetic wastewater which were only 1.12 g/L (biomass yield) and 0.175 g/L (lipid yield). This was possibly due to the presence of trace elements which had contributed to the increase of biomass yield; thus, higher lipid attainability from the microalgal-bacterial culture. This synergistic microalgal-bacterial approach had been proven to be effective in treating wastewater, while also producing useful biomass for eventual lipid production with comparable net energy ratio (NER) value of 0.27, obtained from the life-cycle analysis (LCA) studies. Thereby, contributing towards long-term sustainability and possible commercialization of microbial-based biofuel production.
  2. Shahid MU, Mohamed NM, Muhsan AS, Azella Zaine SN, Khatani M, Yar A, et al.
    Chemosphere, 2023 Apr;321:138009.
    PMID: 36731659 DOI: 10.1016/j.chemosphere.2023.138009
    Dye-Sensitized Solar Cells (DSSCs) have attracted great attention due to environmentally friendly low-cost processing, excellent working ability in diffuse light, and potential to meet the power demands of future buildings due the true class of building integrated photovoltaics (BIPV). Nevertheless, DSSCs have relatively low photoconversion efficiency (PCE) due to multiple issues. Several strategies have been employed to enhance its PCE. For instance, bi-layered structure of photoelectrode i.e., mesoporous TiO2 transparent layer with top scattering layer was introduced which scatter light inside on large angles improves the harvesting ability of photoelectrode thus enhanced PCE. However, scattering layer is composed of aggregated small particles which offer sluggish electron transport due to multiple grain boundaries, consequently, unwanted recombination reaction which leads to poor PCE. This issue has been addressed for transparent layer immensely but ignored for scattering layer. Mostly for scattering layer in previous studies novel structures have been proposed to enhance scattering properties and dye adsorption only. Therefore, in this study for the first time presenting dual functional graphene/TiO2 scattering layer in which solvent exfoliated graphene is incorporated in TiO2 submicron spheres which enhanced electron transport properties, while submicron spheres scatter light effectively. Scattering and electron transport characteristics of DSSCs are thoroughly investigated with the function of graphene loading. Electrochemical impedance spectroscopy (EIS) has revealed that diffusion coefficient length and coefficient and conductivity attained maximum value at 0.01 wt%. while other important parameters such as electron lifetime and electron density in conduction band have been improved till 0.020 wt% graphene loading. However, results indicated that with 0.01 w% graphene 33% higher PCE was achieved than without scattering layer and 13% higher than scattering layer without graphene. The depraving in PCE at >0.01 wt% graphene despite of excellent electron transport improvement is attributed to the loss of diffuse reflectance and higher optical absorption by graphene.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links