Displaying all 6 publications

Abstract:
Sort:
  1. B Aziz S, S Marf A, Dannoun EMA, Brza MA, Abdullah RM
    Polymers (Basel), 2020 Sep 24;12(10).
    PMID: 32987807 DOI: 10.3390/polym12102184
    This report presents a facile and efficient methodology for the fabrication of plasticized polyvinyl alcohol (PVA):chitosan (CS) polymer electrolytes using a solution cast technique. Regarding characterizations of electrical properties and structural behavior, the electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) are used, respectively. Crystalline peaks appear in the XRD pattern of the PVA:CS:NH4I while no peaks can be seen in the XRD pattern of plasticized systems. The degree of crystallinity is calculated for all the samples from the deconvoluted area of crystalline and amorphous phases. Considering the EIS measurements, the most conductive plasticized system shows a relatively high conductivity of (1.37 × 10-4) S/cm, which is eligible for applications in energy storage devices. The analysis of the EIS spectra reveals a decrease in bulk resistance which indicates an increase in free ion carriers. The electrical equivalent circuit (EEC) model is used in the analysis of EIS plots. Dielectric properties are modified with the addition of glycerol as a plasticizer. It is proved that the addition of glycerol as a plasticizer lowers ion association. It also shows, at the low-frequency region, a large value of a dielectric constant which is correlated with electrode polarization (EP). The distribution of relaxation times is associated with conducting ions.
  2. Muhammed DS, Brza MA, M Nofal M, B Aziz S, A Hussen S, Abdulwahid RT
    Materials (Basel), 2020 Jul 03;13(13).
    PMID: 32635317 DOI: 10.3390/ma13132979
    The structure and optical properties of polyethylene oxide (PEO) doped with tin titanate (SnTiO3) nano-filler were studied by X-ray diffraction (XRD) and UV-Vis spectroscopy as non-destructive techniques. PEO-based composed polymer electrolytes inserted with SnTiO3 nano-particles (NPs) were synthesized through the solution cast technique. The change from crystalline phase to amorphous phase of the host polymer was established by the lowering of the intensity and broadening of the crystalline peaks. The optical constants of PEO/SnTiO3 nano-composite (NC), such as, refractive index (n), optical absorption coefficient (α), dielectric loss (εi), as well as dielectric constant (εr) were determined for pure PEO and PEO/SnTiO3 NC. From these findings, the value of n of PEO altered from 2.13 to 2.47 upon the addition of 4 wt.% SnTiO3NPs. The value of εr also increased from 4.5 to 6.3, with addition of 4 wt.% SnTiO3. The fundamental optical absorption edge of the PEO shifted toward lower photon energy upon the addition of the SnTiO3 NPs, confirming a decrement in the optical band gap energy of PEO. The band gap shifted from 4.78 eV to 4.612 eV for PEO-doped with 4 wt.% SnTiO3. The nature of electronic transitions in the pure and the composite material were studied on the basis of Tauc's model, while optical εi examination was also carried out to calculate the optical band gap.
  3. B Aziz S, Brza MA, Brevik I, Hafiz MH, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Sep 16;12(9).
    PMID: 32947829 DOI: 10.3390/polym12092103
    This research paper investigates the electrochemical performance of chitosan (CS): dextran (DX) polymer-blend electrolytes (PBEs), which have been developed successfully with the incorporation of ammonium hexafluorophosphate (NH4PF6). X-ray diffraction (XRD) analysis indicates that the plasticized electrolyte system with the highest value of direct current (DC) ionic conductivity is the most amorphous system. The glycerol addition increased the amorphous phase and improved the ionic dissociation, which contributed to the enhancement of the fabricated device's performance. Transference number analysis (TNM) has shown that the charge transport process is mainly by ions rather than electrons, as tion = 0.957. The CS:DX:NH4PF6 system was found to decompose as the voltage goes beyond 1.5 V. Linear sweep voltammetry (LSV) revealed that the potential window for the most plasticized system is 1.5 V. The fabricated electrochemical double-layer capacitor (EDLC) was analyzed with cyclic voltammetry (CV) and charge-discharge analysis. The results from CV verify that the EDLC in this work holds the characteristics of a capacitor. The imperative parameters of the fabricated EDLC such as specific capacitance and internal resistance were found to be 102.9 F/g and 30 Ω, respectively. The energy stored and power delivered by the EDLC were 11.6 Wh/kg and 2741.2 W/kg, respectively.
  4. Brza MA, B Aziz S, Anuar H, Dannoun EMA, Ali F, Abdulwahid RT, et al.
    Polymers (Basel), 2020 Aug 23;12(9).
    PMID: 32842522 DOI: 10.3390/polym12091896
    In the present work, a novel polymer composite electrolytes (PCEs) based on poly(vinyl alcohol) (PVA): ammonium thiocyanate (NH4SCN): Cd(II)-complex plasticized with glycerol (Gly) are prepared by solution cast technique. The film structure was examined by XRD and FTIR routes. The utmost ambient temperature DC ionic conductivity (σDC) of 2.01 × 10-3 S cm-1 is achieved. The film morphology was studied by field emission scanning electron microscopy (FESEM). The trend of σDC is further confirmed with investigation of dielectric properties. Transference numbers of ions (tion) and electrons (tel) are specified to be 0.96 and 0.04, respectively. Linear sweep voltammetry (LSV) displayed that the PCE potential window is 2.1 V. The desired mixture of activated carbon (AC) and carbon black was used to fabricate the electrodes of the EDLC. Cyclic voltammetry (CV) was carried out by sandwiching the PCEs between two carbon-based electrodes, and it revealed an almost rectangular shape. The EDLC exhibited specific capacitance, energy density, and equivalent series resistance with average of 160.07F/g, 18.01Wh/kg, and 51.05Ω, respectively, within 450 cycles. The EDLC demonstrated the initial power density as 4.065 × 103 W/Kg.
  5. Asnawi ASFM, B Aziz S, M Nofal M, Hamsan MH, Brza MA, Yusof YM, et al.
    Polymers (Basel), 2020 Jun 26;12(6).
    PMID: 32604910 DOI: 10.3390/polym12061433
    In this study, the solution casting method was employed to prepare plasticized polymer electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The electrolyte studied in this current work could be established as new materials in the fabrication of EDLC with high specific capacitance and energy density. The system with high dielectric constant was also associated with high DC conductivity (5.19 × 10-4 S/cm). The increase of the amorphous phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC was affected by ESR.
  6. B Aziz S, H Hamsan M, M Nofal M, San S, Abdulwahid RT, Raza Saeed S, et al.
    Polymers (Basel), 2020 Jul 09;12(7).
    PMID: 32660095 DOI: 10.3390/polym12071526
    In this study, solid polymer blend electrolytes (SPBEs) based on chitosan (CS) and methylcellulose (MC) incorporated with different concentrations of ammonium fluoride (NH4F) salt were synthesized using a solution cast technique. Both Fourier transformation infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed a strong interaction and dispersion of the amorphous region within the CS:MC system in the presence of NH4F. To gain better insights into the electrical properties of the samples, the results of electrochemical impedance spectroscopy (EIS) were analyzed by electrical equivalent circuit (EEC) modeling. The highest conductivity of 2.96 × 10-3 S cm-1 was recorded for the sample incorporated with 40 wt.% of NH4F. Through transference number measurement (TNM) analysis, the fraction of ions was specified. The electrochemical stability of the electrolyte sample was found to be up to 2.3 V via the linear sweep voltammetry (LSV) study. The value of specific capacitance was determined to be around 58.3 F/g. The stability test showed that the electrical double layer capacitor (EDLC) system can be recharged and discharged for up to 100 cycles with an average specific capacitance of 64.1 F/g. The synthesized EDLC cell was found to exhibit high efficiency (90%). In the 1st cycle, the values of internal resistance, energy density and power density of the EDLC cell were determined to be 65 Ω, 9.3 Wh/kg and 1282 W/kg, respectively.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links