Displaying all 6 publications

Abstract:
Sort:
  1. Mat Zain, N.H., Zaini, H., Zulhemay, M.N., Baharum, A., Bustamam, W.F., Abdul Razak, F.H.
    MyJurnal
    Computer games are often considered a teaching and learning tool as it is generally appealing to students. In this preliminary study, we investigate students’ perceptions of engaging game design in Learning of Historical Patriotic Heroes. In total, 33 students were involved in this study. The data was examined using standard descriptive statistical approaches. The results of the study indicated that the majority of the respondents are interested in the idea of Learning of Historical Patriotic Heroes through game approach. Hopefully, the outcome of this preliminary study will underline the need for developing a rigorous engaging game design for education.
  2. Abubaker A, Baharum A, Alrefaei M
    PLoS One, 2015;10(7):e0130995.
    PMID: 26132309 DOI: 10.1371/journal.pone.0130995
    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.
  3. Alwan FM, Baharum A, Hassan GS
    PLoS One, 2013;8(8):e69716.
    PMID: 23936346 DOI: 10.1371/journal.pone.0069716
    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.
  4. Wong PY, Takeno A, Takahashi S, Phang SW, Baharum A
    Polymers (Basel), 2021 Oct 06;13(19).
    PMID: 34641240 DOI: 10.3390/polym13193425
    The biodegradability problem of polymer waste is one of the fatal pollutFions to the environment. Enzymes play an essential role in increasing the biodegradability of polymers. In a previous study, antistatic polymer film based on poly(lactic acid) (PLA) as a matrix and polyaniline (PAni) as a conductive filler, was prepared. To solve the problem of polymer wastes pollution, a crazing technique was applied to the prepared polymer film (PLA/PAni) to enhance the action of enzymes in the biodegradation of polymer. This research studied the biodegradation test based on crazed and non-crazed PLA/PAni films by enzymes. The presence of crazes in PLA/PAni film was evaluated using an optical microscope and scanning electron microscopy (SEM). The optical microscope displayed the crazed in the lamellae form, while the SEM image revealed microcracks in the fibrils form. Meanwhile, the tensile strength of the crazed PLA/PAni film was recorded as 19.25 MPa, which is almost comparable to the original PLA/PAni film with a tensile strength of 20.02 MPa. However, the Young modulus decreased progressively from 1113 MPa for PLA/PAni to 651 MPa for crazed PLA/PAni film, while the tensile strain increased 150% after crazing. The significant decrement in the Young modulus and increment in the tensile strain was due to the craze propagation. The entanglement was reduced and the chain mobility along the polymer chain increased, thus leading to lower resistance to deformation of the polymer chain and becoming more flexible. The presence of crazes in PLA/PAni film showed a substantial change in weight loss with increasing the time of degradation. The weight loss of crazed PLA/PAni film increased to 42%, higher than that of non-crazed PLA/PAni film with only 31%. The nucleation of crazes increases the fragmentation and depolymerization of PLA/PAni film that induced microbial attack and led to higher weight loss. In conclusion, the presence of crazes in PLA/PAni film significantly improved enzymes' action, speeding up the polymer film's biodegradability.
  5. Arman Alim AA, Baharum A, Mohammad Shirajuddin SS, Anuar FH
    Polymers (Basel), 2023 Jan 04;15(2).
    PMID: 36679142 DOI: 10.3390/polym15020261
    It is of significant concern that the buildup of non-biodegradable plastic waste in the environment may result in long-term issues with the environment, the economy and waste management. In this study, low-density polyethylene (LDPE) was compounded with different contents of poly(butylene succinate) (PBS) at 10-50 wt.%, to evaluate the potential of replacing commercial plastics with a biodegradable renewable polymer, PBS for packaging applications. The morphological, mechanical and thermal properties of the LDPE/PBS blends were examined in relation to the effect of polyethylene-graft-maleic anhydride (PE-g-MA) as a compatibilizer. LDPE/PBS/PE-g-MA blends were fabricated via the melt blending method using an internal mixer and then were compression molded into test samples. The presence of LDPE, PBS and PE-g-MA individually in the matrix for each blend presented physical interaction between the constituents, as shown by Fourier-transform infrared spectroscopy (FTIR). The morphology of LDPE/PBS/PE-g-MA blends showed improved compatibility and homogeneity between the LDPE matrix and PBS phase. Compatibilized LDPE/PBS blends showed an improvement in the tensile strength, with 5 phr of compatibilizer providing the optimal content. The thermal stability of LDPE/PBS blends decreased with higher PBS content and the thermal stability of compatibilized blends was higher in contrast to the uncompatibilized blends. Therefore, our research demonstrated that the partial substitution of LDPE with a biodegradable PBS and the incorporation of the PE-g-MA compatibilizer could develop an innovative blend with improved structural, mechanical and thermal properties.
  6. Mohd Aref Y, Othaman R, Anuar FH, Ku Ahmad KZ, Baharum A
    Polymers (Basel), 2023 Jan 24;15(3).
    PMID: 36771895 DOI: 10.3390/polym15030594
    Sansevieria trifasciata fibre (STF) is a lignocellulosic material which could be utilised for reinforcement composites. Surface modification is often needed to improve the compatibility of hydrophilic STF and hydrophobic resin. In this study, treatments for natural fibres to attain superhydrophobic properties were carried out using silica nanoparticles and fluorosilane. Sansevieria trifasciata fibres (STF) were subjected to treatment by deposition of silica (SiO2) nanoparticles which were prepared by the sol-gel method, then followed by modification with fluorosilane, namely 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTS). The presence of SiO2 nanoparticles and PFOTS were evaluated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). The crystallisation properties and thermal behaviour of STF were studied through X-ray diffraction (XRD) and thermogravimetric (TGA) analysis, respectively. The hydrophobicity of STF was determined by water contact angle (WCA) measurement. The results show that nanoscale SiO2 particles were deposited on the STF surface, and PFOTS were covalently linked to them. The SiO2 nanoparticles provide surface roughness to the fibres, whereas the long-chain fluorine on PFOTS lowered the surface free energy, and their combination in these treatments has successfully modified the STF surface from hydrophilic into superhydrophobic with a WCA of 150° and sliding angle of less than 10°. Altogether, a non-toxic, simple, and promising method of imparting hydrophobicity on natural fibres was developed, opening new opportunities for these fibres as reinforcement for composite parts.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links