Displaying all 2 publications

Abstract:
Sort:
  1. Halim N, Kuntom A, Shinde R, Banerjee K
    J AOAC Int, 2020 Sep 01;103(5):1237-1242.
    PMID: 33241391 DOI: 10.1093/jaoacint/qsaa041
    BACKGROUND: Indaziflam (IND) is a herbicide that is used in palm oil plantations for broad spectrum management of weeds. Until now, no validated method has been available for residue estimation of this herbicide in palm oil products.

    OBJECTIVE: In this study, we report a rapid method for the residue analysis of IND and its metabolites, viz., IND-carboxylic acid, diaminotriazine, and triazine indanone in a wide range of palm oil matrices using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    METHOD: The optimized sample preparation workflows included two options: (1) acetonitrile extraction (QuEChERS workflow), followed by freezing at -80°C and (2) acetonitrile extraction, followed by cleanup through a C18 solid phase extraction (SPE) cartridge. The optimized LC runtime was 7 min. All these analytes were estimated by LC-MS/MS multiple reaction monitoring.

    RESULTS: Both sample preparation methods provided similar method performance and acceptable results. The limit of quantification (LOQ) of IND, IND-carboxylic acid, and triazine indanone was 0.001 mg/kg. For diaminotriazine, the LOQ was 0.005 mg/kg. The method accuracy and precision complied with the SANTE/12682/2019 guidelines of analytical quality control.

    CONCLUSIONS: The potentiality of the method lies in a high throughput analysis of IND and its metabolites in a single chromatographic run with high selectivity and sensitivity. Considering its fit-for-purpose performance, the method can be implemented in regulatory testing of IND residues in a wide range of palm oil matrices that are consumed and traded worldwide.

    HIGHLIGHTS: This work has provided a validated method for simultaneous residue analysis of indaziflam and its metabolites in crude palm oil and its derived matrices with high sensitivity, selectivity, and throughput.

  2. Bloch K, Mohammed SM, Karmakar S, Shukla S, Asok A, Banerjee K, et al.
    Front Chem, 2022;10:1013077.
    PMID: 36385994 DOI: 10.3389/fchem.2022.1013077
    Phytofabrication of the nanoparticles with exotic shape and size is an attractive area where nanostructures with noteworthy physicochemical and optoelectronic properties that can be significantly employed for photocatalytic dye degradation. In this study a medicinal plant, Plumbago auriculata leaf extract (PALE) was used to synthesize zinc oxide particles (ZnOPs) and silver mixed zinc oxide particles (ZnOAg1Ps, ZnOAg10Ps, ZnO10Ag1Ps) by varying the concentration of the metal precursor salts, i.e. zinc acetate and silver nitrate. The PALE showed significantly high concentrations of polyphenols, flavonoids, reducing sugar, starch, citric acid and plumbagin up to 314.3 ± 0.33, 960.0 ± 2.88, 121.3 ± 4.60, 150.3 ± 3.17, 109.4 ± 2.36, and 260.4 ± 8.90 μg/ml, respectively which might play an important role for green synthesis and capping of the phytogenic nanoparticles. The resulting particles were polydispersed which were mostly irregular, spherical, hexagonal and rod like in shape. The pristine ZnOPs exhibited a UV absorption band at 352 nm which shifted around 370 in the Ag mixed ZnOPs with concomitant appearance of peaks at 560 and 635 nm in ZnO10Ag1Ps and ZnOAg1Ps, respectively. The majority of the ZnOPs, ZnOAg1Ps, ZnOAg10Ps, and ZnO10Ag1Ps were 407, 98, 231, and 90 nm in size, respectively. Energy dispersive spectra confirmed the elemental composition of the particles while Fourier transform infrared spectra showed the involvement of the peptide and methyl functional groups in the synthesis and capping of the particles. The composites exhibited superior photocatalytic degradation of methylene blue dye, maximum being 95.7% by the ZnOAg10Ps with a rate constant of 0.0463 s-1 following a first order kinetic model. The present result clearly highlights that Ag mixed ZnOPs synthesized using Plumbago auriculata leaf extract (PALE) can play a critical role in removal of hazardous dyes from effluents of textile and dye industries. Further expanding the application of these phytofabricated composites will promote a significant complementary and alternative strategy for treating refractory pollutants from wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links