Displaying all 3 publications

Abstract:
Sort:
  1. Basir Khan MR, Jidin R, Pasupuleti J
    Data Brief, 2016 Mar;6:117-20.
    PMID: 26779562 DOI: 10.1016/j.dib.2015.11.043
    Renewable energy assessments for resort islands in the South China Sea were conducted that involves the collection and analysis of meteorological and topographic data. The meteorological data was used to assess the PV, wind and hydropower system potentials on the islands. Furthermore, the reconnaissance study for hydro-potentials were conducted through topographic maps in order to determine the potential sites suitable for development of run-of-river hydropower generation. The stream data was collected for 14 islands in the South China Sea with a total of 51 investigated sites. The data from this study are related to the research article "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea" published in Energy (Khan et al., 2015) [1].
  2. Basir Khan MR, Jidin R, Pasupuleti J
    Data Brief, 2016 Mar;6:489-91.
    PMID: 26900590 DOI: 10.1016/j.dib.2015.12.033
    The data consists of actual generation-side auditing including the distribution of loads, seasonal load profiles, and types of loads as well as an analysis of local development planning of a resort island in the South China Sea. The data has been used to propose an optimal combination of hybrid renewable energy systems that able to mitigate the diesel fuel dependency on the island. The resort island selected is Tioman, as it represents the typical energy requirements of many resort islands in the South China Sea. The data presented are related to the research article "Optimal Combination of Solar, Wind, Micro-Hydro and Diesel Systems based on Actual Seasonal Load Profiles for a Resort Island in the South China Sea" [1].
  3. Chong PL, Ismail D, Ng PK, Kong FY, Basir Khan MR, Thirugnanam S
    Sensors (Basel), 2024 Feb 10;24(4).
    PMID: 38400335 DOI: 10.3390/s24041177
    Electrical energy is often wasted through human negligence when people do not switch off electrical appliances such as lighting after leaving a place. Such a scenario often happens in a classroom when the last person leaves the class and forgets to switch off the electrical appliances. Such wastage may not be able to be afforded by schools that are limited financially. Therefore, this research proposed a simple and cost-effective system that can analyze whether there is or is not a human presence in the classroom by applying a counter to count the total number of people entering and leaving the classroom based on the sensing signals of a set of dual PIR sensors only and then correlating this to automatically turn on or off the electrical appliances mentioned. The total number of people identified in the classroom is also displayed on an LCD screen. A TRIZ approach is used to support the ideation of the system. The system can switch on several electrical output loads simultaneously when the presence of people is detected and switch them off when there are no people in the classroom. The proposed system can be expanded to be used in homes, offices, and buildings to prevent the high cost of electricity consumption caused by the negligence of people. This enables smarter control of electricity consumption.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links