Displaying all 5 publications

Abstract:
Sort:
  1. Piera KA, Aziz A, William T, Bell D, González IJ, Barber BE, et al.
    Malar J, 2017 01 13;16(1):29.
    PMID: 28086789 DOI: 10.1186/s12936-016-1676-9
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection.

    METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs.

    RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL.

    CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.

  2. Tan AF, Thota P, Sakam SSB, Lew YL, Rajahram GS, William T, et al.
    Sci Rep, 2023 Mar 23;13(1):4760.
    PMID: 36959462 DOI: 10.1038/s41598-023-31839-7
    Plasmodium knowlesi is the major cause of zoonotic malaria in Southeast Asia. Rapid and accurate diagnosis enables effective clinical management. A novel malaria diagnostic tool, Gazelle (Hemex Health, USA) detects haemozoin, a by-product of haem metabolism found in all Plasmodium infections. A pilot phase refined the Gazelle haemozoin identification algorithm, with the algorithm then tested against reference PCR in a larger cohort of patients with P. knowlesi mono-infections and febrile malaria-negative controls. Limit-of-detection analysis was conducted on a subset of P. knowlesi samples serially diluted with non-infected whole blood. The pilot phase of 40 P. knowlesi samples demonstrated 92.5% test sensitivity. P. knowlesi-infected patients (n = 203) and febrile controls (n = 44) were subsequently enrolled. Sensitivity and specificity of the Gazelle against reference PCR were 94.6% (95% CI 90.5-97.3%) and 100% (95% CI 92.0-100%) respectively. Positive and negative predictive values were 100% and 98.8%, respectively. In those tested before antimalarial treatment (n = 143), test sensitivity was 96.5% (95% CI 92.0-98.9%). Sensitivity for samples with ≤ 200 parasites/µL (n = 26) was 84.6% (95% CI 65.1-95.6%), with the lowest parasitaemia detected at 18/µL. Limit-of-detection (n = 20) was 33 parasites/µL (95% CI 16-65%). The Gazelle device has the potential for rapid, sensitive detection of P. knowlesi infections in endemic areas.
  3. Vuong NL, Lam PK, Ming DKY, Duyen HTL, Nguyen NM, Tam DTH, et al.
    Elife, 2021 06 22;10.
    PMID: 34154705 DOI: 10.7554/eLife.67460
    Background: Early identification of severe dengue patients is important regarding patient management and resource allocation. We investigated the association of 10 biomarkers (VCAM-1, SDC-1, Ang-2, IL-8, IP-10, IL-1RA, sCD163, sTREM-1, ferritin, CRP) with the development of severe/moderate dengue (S/MD).

    Methods: We performed a nested case-control study from a multi-country study. A total of 281 S/MD and 556 uncomplicated dengue cases were included.

    Results: On days 1-3 from symptom onset, higher levels of any biomarker increased the risk of developing S/MD. When assessing together, SDC-1 and IL-1RA were stable, while IP-10 changed the association from positive to negative; others showed weaker associations. The best combinations associated with S/MD comprised IL-1RA, Ang-2, IL-8, ferritin, IP-10, and SDC-1 for children, and SDC-1, IL-8, ferritin, sTREM-1, IL-1RA, IP-10, and sCD163 for adults.

    Conclusions: Our findings assist the development of biomarker panels for clinical use and could improve triage and risk prediction in dengue patients.

    Funding: This study was supported by the EU's Seventh Framework Programme (FP7-281803 IDAMS), the WHO, and the Bill and Melinda Gates Foundation.

  4. Bechteler J, Peñaloza-Bojacá G, Bell D, Gordon Burleigh J, McDaniel SF, Christine Davis E, et al.
    Am J Bot, 2023 Oct 04.
    PMID: 37792319 DOI: 10.1002/ajb2.16249
    PREMISE: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear.

    METHODS: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations.

    RESULTS: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology.

    CONCLUSIONS: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.

  5. Thriemer K, Bobogare A, Ley B, Gudo CS, Alam MS, Anstey NM, et al.
    Malar J, 2018 Jun 20;17(1):241.
    PMID: 29925430 DOI: 10.1186/s12936-018-2380-8
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links