Displaying all 2 publications

Abstract:
Sort:
  1. Trivedi K, Bhaskar V, Ganesh M, Venkataraghavan K, Choudhary P, Shah S, et al.
    J Pharm Bioallied Sci, 2015 Aug;7(Suppl 2):S474-80.
    PMID: 26538901 DOI: 10.4103/0975-7406.163508
    AIM: This study evaluates erosive potential of commonly used beverages, medicated syrup, and their effects on dental enamel with and without restoration in vitro.

    MATERIALS AND METHODS: Test medias used in this study included carbonated beverage, noncarbonated beverage, high-energy sports drink medicated cough syrup, distilled water as the control. A total of 110 previously extracted human premolar teeth were selected for the study. Teeth were randomly divided into two groups. Test specimens were randomly distributed to five beverages groups and comprised 12 specimens per group. Surface roughness (profilometer) readings were performed at baseline and again, following immersion for 14 days (24 h/day). Microleakage was evaluated. The results obtained were analyzed for statistical significance using SPSS-PC package using the multiple factor ANOVA at a significance level of P < 0.05. Paired t-test, Friedman test ranks, and Wilcoxon signed ranks test.

    RESULTS: For surface roughness high-energy sports drink and noncarbonated beverage showed the highly significant difference with P values of 0.000 and 0.000, respectively compared to other test media. For microleakage high-energy sports drink had significant difference in comparison to noncarbonated beverage (P = 0.002), medicated syrup (P = 0.000), and distilled water (P = 0.000).

    CONCLUSION: High-energy sports drink showed highest surface roughness value and microleakage score among all test media and thus greater erosive potential to enamel while medicated syrup showed least surface roughness value and microleakage among all test media.

  2. Bhaskar V, Kumar S, Sujathan Nair A, Gokul S, Rajappan Krishnendu P, Benny S, et al.
    J Biomol Struct Dyn, 2023 Dec 08.
    PMID: 38064315 DOI: 10.1080/07391102.2023.2291549
    Tuberculosis is one of the most ancient infectious diseases known to mankind predating upper Paleolithic era. In the current scenario, treatment of drug resistance tuberculosis is the major challenge as the treatment options are limited, less efficient and more toxic. In our study we have developed an atom based 3D QSAR model, statistically validated sound with R2 > 0.90 and Q2 > 0.72 using reported direct inhibitors of InhA (2018-2022), validated by enzyme inhibition assay. The model was used to screen a library of 3958 molecules taken from Binding DB and candidates molecules with promising predicted activity value (pIC50) > 5) were selected for further analyzed screening by using molecular docking, ADME profiling and molecular dynamic simulations. The lead molecule, ZINC11536150 exhibited good docking score (glideXP = -11.634 kcal/mol) compared to standard triclosan (glideXP =  -7.129 kcal/mol kcal/mol) and through molecular dynamics study it was observed that the 2nv6-complex of ZINC11536150 with Mycobacterium tuberculosis InhA (PDB entry: 2NV6) complex remained stable throughout the entire simulation time of 100 ns.Communicated by Ramaswamy H. Sarma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links