Displaying all 7 publications

Abstract:
Sort:
  1. Khanam R, Hejazi II, Shahabuddin S, Bhat AR, Athar F
    J Pharm Anal, 2019 Apr;9(2):133-141.
    PMID: 31011470 DOI: 10.1016/j.jpha.2018.12.002
    1, 3, 4-Oxadiazole derivatives (4a-5f) were previously synthesized to investigate their anticancer properties. However, studies relating to their antioxidant potential and signal transducer and activator of transcription (STAT) inhibition have not been performed. We investigated previously synthesized 1, 3, 4-oxadiazole derivatives (4a-5f) for various radical scavenging properties using several in vitro antioxidant assays and also for direct inhibition of STAT3 through molecular docking. The data obtained from various antioxidant assays such as 2, 2,-diphenyl-1-picrylhydrazyl radical (DPPH), nitric oxide, hydrogen peroxide, and superoxide anion radical revealed that among all the derivatives, compound 5e displayed high antioxidant activities than the standard antioxidant L-ascorbic acid. Additionally, the total reduction assay and antioxidant capacity assay further confirmed the antioxidant potential of compound 5e. Furthermore, the molecular docking studies performed for all derivatives along with the standard inhibitor STX-0119 showed that binding energy released in direct binding with the SH2 domain of STAT3 was the highest for compound 5e (-9.91kcal/mol). Through virtual screening, compound 5e was found to exhibit optimum competency in inhibiting STAT3 activity. Compound 5e decreased the activation of STAT3 as observed with Western blot. In brief, compound 5e was identified as a potent antioxidant agent and STAT3 inhibitor and effective agent for cancer treatment.
  2. Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Jayant V, et al.
    Apoptosis, 2018 02;23(2):113-131.
    PMID: 29349707 DOI: 10.1007/s10495-018-1439-x
    Piperazine scaffolds or 2-azetidinone pharmacophores have been reported to show anti-cancer activities and apoptosis induction in different types of cancer cells. However, the mechanistic studies involve in induction of apoptosis addressing these two moieties for human cervical cancer cells remain uncertain. The present study emphasizes on the anti-proliferating properties and mechanism involved in induction of apoptosis for these structurally related azoles derivatives in HeLa cancer cells. 1-Phenylpiperazine clubbed with 2-azetidione derivatives (5a-5h) were synthesized, characterized using various spectroscopic techniques and evaluated for their in-vitro anti-proliferative activities and induction of apoptosis. Further, we also evaluated oxidative stress generated by these synthetic derivatives (5a-5h). Cell viability studies revealed that among all, the compound N-(3-chloro-2-(3-nitrophenyl)-4-oxoazetidin-1-yl)-2-(4-phenylpiperazin-1-yl) acetamide 5e remarkably inhibited the growth of HeLa cells in a concentration dependent manner having IC50 value of 29.44 ± 1.46 µg/ml. Morphological changes, colonies suppression and inhibition of migration clearly showed the antineoplasicity in HeLa cells treated with 5e. Simultaneously, phosphatidylserine externalization, DNA fragmentation and cell-cycle arrest showed ongoing apoptosis in the HeLa cancer cells induced by compound 5e in concentration dependent manner. Additionally, generation of intracellular ROS along with the decrease in mitochondrial membrane potential supported that compound 5e caused oxidative stress resulting in apoptosis through mitochondria mediated pathway. Elevation in the level of cytochrome c and upregulation in expression of caspase-3 clearly indicated the involvement of the intrinsic pathway of programmed cell death. In brief; compound 5e could serve as a promising lead for the development of an effective antitumor agent.
  3. Mukhtar NA, Suleiman M, Al-Maqtari HM, Theva Das K, Bhat AR, Jamalis J
    Mini Rev Med Chem, 2025 Jan 07.
    PMID: 39781713 DOI: 10.2174/0113895575351704241120060746
    Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas. I3A derivatives have demonstrated a wide range of biological activities, including anti-inflammatory, anti-leishmanial, anti-cancer, anti-bacterial, antifungal, and anti-HIV properties. The structural modifications introduced to the I3A scaffold, such as substitutions on the indole ring (alkylation/arylation/halogenation), variations in the aldehyde group via condensation (Aldol/Claisen/Knoevenagel), and molecular hybridization with other reputable bioactive compounds like coumarins, chalcones, triazoles, and thiophenes, contribute to these activities. Beyond its therapeutic potential, I3A has also found applications as a ligand for Schiff base synthesis, a polymer, and a chromophore. This review provides a comprehensive overview of the latest research on I3A and its derivatives, focusing on the key reactions, modification pathways, reaction conditions, yields, and associated therapeutic activities. By understanding these advancements, researchers can gain valuable insights into the potential applications and future directions for I3A-based drug discovery.
  4. Ahmmed F, Al-Mijalli SH, Abdallah EM, Eissa IH, Ali F, Bhat AR, et al.
    Pharmaceuticals (Basel), 2023 Jul 13;16(7).
    PMID: 37513910 DOI: 10.3390/ph16070998
    In this study, a series of galactoside-based molecules, compounds of methyl β-d-galactopyranoside (MDGP, 1), were selectively acylated using 2-bromobenzoyl chloride to obtain 6-O-(2-bromobenzoyl) substitution products, which were then transformed into 2,3,4-tri-O-6-(2-bromobenzoyl) compounds (2-7) with various nontraditional acyl substituents. The chemical structures of the synthesized analogs were characterized by spectroscopic methods and physicochemical and elemental data analyses. The antimicrobial activities of the compounds against five human pathogenic bacteria and two phyto-fungi were evaluated in vitro and it was found that the acyl moiety-induced synthesized analogs exhibited varying levels of antibacterial activity against different bacteria, with compounds 3 and 6 exhibiting broad-spectrum activity and compounds 2 and 5 exhibiting activity against specific bacteria. Compounds 3 and 6 were tested for MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) based on their activity. The synthesized analogs were also found to have potential as a source of new antibacterial agents, particularly against gram-positive bacteria. The antifungal results suggested that the synthesized analogs could be a potential source of novel antifungal agents. Moreover, cytotoxicity testing revealed that the compounds are less toxic. A structure-activity relationship (SAR) investigation revealed that the lauroyl chain [CH3(CH2)10CO-] and the halo-aromatic chain [3(/4)-Cl.C6H4CO-] in combination with sugar, had the most potent activity against bacterial and fungal pathogens. Density functional theory (DFT)-calculated thermodynamic and physicochemical parameters, and molecular docking, showed that the synthesized molecule may block dengue virus 1 NS2B/NS3 protease (3L6P). A 150 ns molecular dynamic simulation indicated stable conformation and binding patterns in a stimulating environment. In silico ADMET calculations suggested that the designed (MDGP, 1) had good drug-likeness values. In summary, the newly synthesized MDGP analogs exhibit potential antiviral activity and could serve as a therapeutic target for dengue virus 1 NS2B/NS3 protease.
  5. Suleiman M, Almalki FA, Ben Hadda T, Kawsar SMA, Chander S, Murugesan S, et al.
    Pharmaceuticals (Basel), 2023 Oct 31;16(11).
    PMID: 38004404 DOI: 10.3390/ph16111538
    The human immunodeficiency virus (HIV) is the primary cause of acquired immune deficiency syndrome (AIDS), one of the deadliest pandemic diseases. Various mechanisms and procedures have been pursued to synthesise several anti-HIV agents, but due to the severe side effects and multidrug resistance spawning from the treatment of HIV/AIDS using highly active retroviral therapy (HAART), it has become imperative to design and synthesise novel anti-HIV agents. Literature has shown that natural sources, particularly the plant kingdom, can release important metabolites that have several biological, mechanistic and structural representations similar to chemically synthesised compounds. Certainly, compounds from natural and ethnomedicinal sources have proven to be effective in the management of HIV/AIDS with low toxicity, fewer side effects and affordability. From plants, fungi and bacteria, coumarin can be obtained, which is a secondary metabolite and is well known for its actions in different stages of the HIV replication cycle: protease, integrase and reverse transcriptase (RT) inhibition, cell membrane fusion and viral host attachment. These, among other reasons, are why coumarin moieties will be the basis of a good building block for the development of potent anti-HIV agents. This review aims to outline the synthetic pathways, structure-activity relationship (SAR) and POM analyses of coumarin hybrids with anti-HIV activity, detailing articles published between 2000 and 2023.
  6. Ahmed S, Bhat AR, Rahiman AK, Dongre RS, Hasan AH, Niranjan V, et al.
    J Biomol Struct Dyn, 2023 Sep 28.
    PMID: 37768136 DOI: 10.1080/07391102.2023.2258404
    In this study, a series of thiazolidine-2,4-dione derivatives 3a-i were synthesized and evaluated for antibacterial activity against Gram-positive and Gram-negative strains of Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Newly prepared thiazolidine (TZD) derivatives were further screened separately for in vitro antifungal activity against cultures of fungal species, namely, Aspergillus niger, Alternaria brassicicola, Chaetomium murorum, Fusarium oxysporum, Lycopodium sp. and Penicillium notatum. The electron-donating substituents (-OH and -OCH3) and electron-withdrawing substituents (-Cl and -NO2) on the attached arylidene moieties of five-membered heterocyclic ring enhanced the broad spectrum of antimicrobial and antifungal activities. The molecular docking study has revealed that compound 3h strongly interacts with the catalytic residues of the active site of the β-carbonic anhydrase (P. aeruginosa) and has the best docking score. In silico pharmacokinetics studies showed the drug-likeness and non-toxic nature of the synthesized compounds, which indicates the combined antibacterial, antiviral and antitumor pharmacophore sites of the targeted drug. This work demonstrates that potential TZD derivatives bind to different types of bacterial and fungal pathogens for circumventing their activities and opens avenues for the development of newer drug candidates that can target bacterial and fungal pathogens.Communicated by Ramaswamy H. Sarma.
  7. Hassan SA, Aziz DM, Abdullah MN, Bhat AR, Dongre RS, Hadda TB, et al.
    J Biomol Struct Dyn, 2024 Apr;42(7):3747-3763.
    PMID: 37402503 DOI: 10.1080/07391102.2023.2226713
    In this work, Schiff bases and Thiazolidin-4-ones, were synthesized using Sonication and Microwave techniques, respectively. The Schiff base derivatives (3a-b) were synthesized via the reaction of Sulfathiazole (1) with benzaldehyde derivatives (2a-b), followed by the synthesis of 4-thiazoledinone (4a-b) derivatives by cyclizing the synthesized Schiff bases through thioglycholic acid. All the synthesized compounds were characterized by spectroscopic techniques such as FT IR, NMR and HRMS. The synthesized compounds were tested for their in vitro antimicrobial and antioxidant and in vivo cytotoxicity and hemolysis ability. The synthesized compounds displayed better antimicrobial and antioxidant activity and low toxicity in comparison to reference drugs and negative controls, respectively. The hemolysis test revealed the compounds exhibit lower hemolytic effects and hemolytic values are comparatively low and the safety of compounds is in comparison with standard drugs. Theoretical calculations were carried out by using the molecular operating environment (MOE) and Gaussian computing software and observations were in good agreement with the in vitro and in vivo biological activities. Petra/Osiris/Molinspiration (POM) results indicate the presence of three combined antibacterial, antiviral and antitumor pharmacophore sites. The molecular docking revealed the significant binding affinities and non-bonding interactions between the compounds and Erwinia Chrysanthemi (PDB ID: 1SHK). The molecular dynamics simulation under in silico physiological conditions revealed a stable conformation and binding pattern in a stimulating environment. HighlightsNew series of Thaiazolidin-4-one derivatives have been synthesized.Sonication and microwave techniques are used.Antimicrobial, Antioxidant, cytotoxicity, and hemolysis activities were observed for all synthesized compounds.Molecular Docking and DFT/POM analyses have been predicted.Communicated by Ramaswamy H. Sarma.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links