Displaying all 4 publications

Abstract:
Sort:
  1. Wu Y, Al-Jumaili SJ, Al-Jumeily D, Bian H
    Sensors (Basel), 2022 Nov 09;22(22).
    PMID: 36433222 DOI: 10.3390/s22228626
    This paper's novel focus is predicting the leaf nitrogen content of rice during growing and maturing. A multispectral image processing-based prediction model of the Radial Basis Function Neural Network (RBFNN) model was proposed. Moreover, this paper depicted three primary points as the following: First, collect images of rice leaves (RL) from a controlled condition experimental laboratory and new shoot leaves in different stages in the visible light spectrum, and apply digital image processing technology to extract the color characteristics of RL and the morphological characteristics of the new shoot leaves. Secondly, the RBFNN model, the General Regression Model (GRL), and the General Regression Method (GRM) model were constructed based on the extracted image feature parameters and the nitrogen content of rice leaves. Third, the RBFNN is optimized by and Partial Least-Squares Regression (RBFNN-PLSR) model. Finally, the validation results show that the nitrogen content prediction models at growing and mature stages that the mean absolute error (MAE), the Mean Absolute Percentage Error (MAPE), and the Root Mean Square Error (RMSE) of the RFBNN model during the rice-growing stage and the mature stage are 0.6418 (%), 0.5399 (%), 0.0652 (%), and 0.3540 (%), 0.1566 (%), 0.0214 (%) respectively, the predicted value of the model fits well with the actual value. Finally, the model may be used to give the best foundation for achieving exact fertilization control by continuously monitoring the nitrogen nutrition status of rice. In addition, at the growing stage, the RBFNN model shows better results compared to both GRL and GRM, in which MAE is reduced by 0.2233% and 0.2785%, respectively.
  2. Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, et al.
    Sci Total Environ, 2020 Jan 20;701:134979.
    PMID: 31733400 DOI: 10.1016/j.scitotenv.2019.134979
    Floods are one of the most devastating types of disasters that cause loss of lives and property worldwide each year. This study aimed to evaluate and compare the prediction capability of the naïve Bayes tree (NBTree), alternating decision tree (ADTree), and random forest (RF) methods for the spatial prediction of flood occurrence in the Quannan area, China. A flood inventory map with 363 flood locations was produced and partitioned into training and validation datasets through random selection with a ratio of 70/30. The spatial flood database was constructed using thirteen flood explanatory factors. The probability certainty factor (PCF) method was used to analyze the correlation between the factors and flood occurrences. Consequently, three flood susceptibility maps were produced using the NBTree, ADTree, and RF methods. Finally, the area under the curve (AUC) and statistical measures were used to validate the flood susceptibility models. The results indicated that the RF method is an efficient and reliable model in flood susceptibility assessment, with the highest AUC values, positive predictive rate, negative predictive rate, sensitivity, specificity, and accuracy for the training (0.951, 0.892, 0.941, 0.945, 0.886, and 0.915, respectively) and validation (0.925, 0.851, 0.938, 0.945, 0.835, and 0.890, respectively) datasets.
  3. Sang C, Yan H, Chan WK, Zhu X, Sun T, Chang X, et al.
    Front Med (Lausanne), 2021;8:637652.
    PMID: 33708783 DOI: 10.3389/fmed.2021.637652
    Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of fibrosis. Liver biopsy remains the gold standard for the confirmation of fibrosis in NAFLD patients. Effective and non-invasive diagnosis of advanced fibrosis is essential to disease surveillance and treatment decisions. Herein we used routine medical test markers and logistic regression to differentiate early and advanced fibrosis in NAFLD patients from China, Malaysia, and India (n1 = 540, n2 = 147, and n3 = 97) who were confirmed by liver biopsy. Nine parameters, including age, body mass index, fasting blood glucose, presence of diabetes or impaired fasting glycemia, alanine aminotransferase, γ-glutamyl transferase, triglyceride, and aspartate transaminase/platelet count ratio, were selected by stepwise logistic regression, receiver operating characteristic curve (ROC), and hypothesis testing and were used for model construction. The area under the ROC curve (auROC) of the model was 0.82 for differentiating early and advanced fibrosis (sensitivity = 0.69, when specificity = 0.80) in the discovery set. Its diagnostic ability remained good in the two independent validation sets (auROC = 0.89 and 0.71) and was consistently superior to existing panels such as the FIB-4 and NAFLD fibrosis score. A web-based tool, LiveFbr, was developed for fast access to our model. The new model may serve as an attractive tool for fibrosis classification in NAFLD patients.
  4. He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, et al.
    Sci Total Environ, 2019 May 01;663:1-15.
    PMID: 30708212 DOI: 10.1016/j.scitotenv.2019.01.329
    Landslides are major hazards for human activities often causing great damage to human lives and infrastructure. Therefore, the main aim of the present study is to evaluate and compare three machine learning algorithms (MLAs) including Naïve Bayes (NB), radial basis function (RBF) Classifier, and RBF Network for landslide susceptibility mapping (LSM) at Longhai area in China. A total of 14 landslide conditioning factors were obtained from various data sources, then the frequency ratio (FR) and support vector machine (SVM) methods were used for the correlation and selection the most important factors for modelling process, respectively. Subsequently, the resulting three models were validated and compared using some statistical metrics including area under the receiver operating characteristics (AUROC) curve, and Friedman and Wilcoxon signed-rank tests The results indicated that the RBF Classifier model had the highest goodness-of-fit and performance based on the training and validation datasets. The results concluded that the RBF Classifier model outperformed and outclassed (AUROC = 0.881), the NB (AUROC = 0.872) and the RBF Network (AUROC = 0.854) models. The obtained results pointed out that the RBF Classifier model is a promising method for spatial prediction of landslide over the world.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links