Displaying all 5 publications

Abstract:
Sort:
  1. Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A
    Int J Biol Macromol, 2017 Nov;104(Pt A):423-431.
    PMID: 28591593 DOI: 10.1016/j.ijbiomac.2017.06.010
    This paper describes the fabrication and characterization of bio-nanocomposite hydrogel beads based on Kappa-Carrageenan (κ-Carrageenan) and bio-synthesized silver nanoparticles (Ag-NPs). The silver nanoparticles were prepared in aqueous Citrullus colocynthis seed extract as both reducing and capping agent. Cross-linked κ-Carrageenan/Ag-NPs hydrogel beads were prepared using potassium chloride as the cross-linker. The hydrogel beads were characterized using XRD and FESEM. Moreover, swelling property of the hydrogel beads was investigated. The Ag release profile of the hydrogels was obtained by fitting the experimental data to power law equation. The direct visualization of the green synthesized Ag-NPs using TEM shows particle size in the range of 23±2nm. The bio-nanocomposite hydrogels showed lesser swelling behavior in comparison with pure κ-Carrageenan hydrogel. Regardless the slow Ag release, κ-Carrageenan/Ag-NPs presented good antibacterial activities against Staphylococcus aureus, Methicilin Resistant Staphylococcus aurous, Peseudomonas aeruginosa and Escherichia coli with maximum zones of inhibition 11±2mm. Cytotoxicity study showed that the bio-nanocomposite hydrogels with non-toxic effect of concentration below 1000μg/mL have great pharmacological potential and a suitable level of safety for use in the biological systems.
  2. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al.
    Genes (Basel), 2017 Oct 20;8(10).
    PMID: 29053567 DOI: 10.3390/genes8100281
    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
  3. Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, et al.
    Molecules, 2017 Sep 30;22(10).
    PMID: 28974019 DOI: 10.3390/molecules22101645
    Zerumbone (ZER) is a phytochemical isolated from the subtropical Zingiberaceae family and as a natural compound it has different biomedical properties such as antioxidant, anti-inflammatory anti-proliferative activity. ZER also has effects on angiogenesis and acts as an antitumor drug in the treatment of cancer, showing selective toxicity toward various cancer cell lines. Several techniques also have been established for extraction of ZER from the rhizomes of ginger. This review paper is an overview of recent research about different extraction methods and their efficiencies, in vivo and vitro investigations of ZER and also its prominent chemopreventive properties and treatment mechanisms. Most of the studies mentioned in this review paper may be useful use as a knowledge summary to explain ZER extraction and anticancer activities, which will show a way for the development of strategies in the treatment of malignancies using ZER.
  4. Abdul Khalil K, Mustafa S, Mohammad R, Bin Ariff A, Shaari Y, Abdul Manap Y, et al.
    Biomed Res Int, 2014;2014:787989.
    PMID: 24527457 DOI: 10.1155/2014/787989
    This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.
  5. Moniri M, Boroumand Moghaddam A, Azizi S, Abdul Rahim R, Bin Ariff A, Zuhainis Saad W, et al.
    Nanomaterials (Basel), 2017 Sep 04;7(9).
    PMID: 32962322 DOI: 10.3390/nano7090257
    Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links