Displaying all 4 publications

Abstract:
Sort:
  1. Hickey AC, Koster JA, Thalmann CM, Hardcastle K, Tio PH, Cardosa MJ, et al.
    Am J Trop Med Hyg, 2013 Dec;89(6):1043-57.
    PMID: 24062475 DOI: 10.4269/ajtmh.13-0145
    Dengue virus (DENV) is considered to be the most important arthropod-borne viral disease and causes more than 100 million human infections annually. To further characterize primary DENV infection in vivo, rhesus macaques were infected with DENV-1, DENV-2, DENV-3, or DENV-4 and clinical parameters, as well as specificity and longevity of serologic responses, were assessed. Overt clinical symptoms were not present after infection. However, abnormalities in blood biochemical parameters consistent with heart, kidney, and liver damage were observed, and changes in plasma fibrinogen, D-dimers, and protein C indicated systemic activation of the blood coagulation pathway. Significant homotypic and heterotypic serum immunoglobulins were present in all animals, and IgG persisted for at least 390 days. Serum neutralizing antibody responses were highly serotype specific by day 120. However, some heterotypic neutralizing activity was noted in infected animals. Identification of serotype-specific host responses may help elucidate mechanisms that mediate severe DENV disease after reinfection.
  2. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.
    Antiviral Res, 2013 Oct;100(1):8-13.
    PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012
    Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
  3. Lim PY, Hickey AC, Jamiluddin MF, Hamid S, Kramer J, Santos R, et al.
    Vaccine, 2015 Nov 4;33(44):6017-24.
    PMID: 26271825 DOI: 10.1016/j.vaccine.2015.05.108
    A vaccine against human enterovirus 71 (EV-A71) is urgently needed to combat outbreaks of EV-A71 and in particular, the serious neurological complications that manifest during these outbreaks. In this study, an EV-A71 virus-like-particle (VLP) based on a B5 subgenogroup (EV-A71-B5 VLP) was generated using an insect cell/baculovirus platform. Biochemical analysis demonstrated that the purified VLP had a highly native procapsid structure and initial studies in vivo demonstrated that the VLPs were immunogenic in mice. The impact of VLP immunization on infection was examined in non-human primates using a VLP prime-boost strategy prior to EV-A71 challenge. Rhesus macaques were immunized on day 0 and day 21 with VLPs (100 μg/dose) containing adjuvant or with adjuvant alone (controls), and were challenged with EV-A71 on day 42. Complete blood counts, serum chemistry, magnetic resonance imaging (MRI) scans, and histopathology results were mostly normal in vaccinated and control animals after virus challenge demonstrating that the fatal EV-A71-B3 clinical isolate used in this study was not highly virulent in rhesus macaques. Viral genome and/or infectious virus were detected in blood, spleen or brain of two of three control animals, but not in any specimens from the vaccinated animals, indicating that VLP immunization prevented systemic spread of EV-A71 in rhesus macaques. High levels of IgM and IgG were detected in VLP-vaccinated animals and these responses were highly specific for EV-A71 particles and capsid proteins. Serum from vaccinated animals also exhibited similar neutralizing activity against different subgenogroups of EV-A71 demonstrating that the VLPs induced cross-neutralizing antibodies. In conclusion, our EV-A71-B5 VLP is safe, highly immunogenic, and prevents systemic EV-A71-B3 infection in nonhuman primates making it a viable attractive vaccine candidate for EV-A71.
  4. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, et al.
    Sci Transl Med, 2012 Aug 08;4(146):146ra107.
    PMID: 22875827 DOI: 10.1126/scitranslmed.3004241
    In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links