Displaying all 4 publications

Abstract:
Sort:
  1. Zaki S, Merican F, Muangmai N, Convey P, Broady P
    Harmful Algae, 2020 03;93:101800.
    PMID: 32307064 DOI: 10.1016/j.hal.2020.101800
    Microcystins (MCs) are secondary metabolites produced by cyanobacteria and have been well-documented in temperate and tropical regions. However, knowledge of the production of MCs in extremely cold environments is still in its infancy. Recently, examination of 100-year-old Antarctic cyanobacterial mats collected from Ross Island and the McMurdo Ice Shelf during Captain R.F. Scott's Discovery Expedition revealed that the presence of MCs in Antarctica is not a new phenomenon. Here, morphological and molecular phylogenetic analyses are used to identify a new microcystin-producing freshwater cyanobacterium, Anagnostidinema pseudacutissimum. The strain was isolated from a deep-frozen (-15 °C) sample collected from a red-brown cyanobacterial mat in a frozen pond at Cape Crozier (Ross Island, continental Antarctica) in 1984-1985. Amplification of the mcyE gene fragment involved in microcystin biosynthesis from A. pseudacutissimum confirmed that it is identical to the sequence from other known microcystin-producing cyanobacteria. Analysis of extracts from this A. pseudacutissimum strain by HPLC-MS/MS confirmed the presence of MC-LR and -YR at concentrations of 0.60 μg/L and MC-RR at concentrations of 0.20 μg/L. This is the first report of microcystin production from a species of Anagnostidinema from Antarctica.
  2. Radzi R, Muangmai N, Broady P, Wan Omar WM, Lavoue S, Convey P, et al.
    PLoS One, 2019;14(11):e0224395.
    PMID: 31682631 DOI: 10.1371/journal.pone.0224395
    Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1-D1´ helix of the 16S-23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.
  3. Usman AS, Merican F, Zaki S, Broady P, Convey P, Muangmai N
    Harmful Algae, 2022 Dec;120:102336.
    PMID: 36470600 DOI: 10.1016/j.hal.2022.102336
    Twenty cyanobacterial strains of eight morphospecies isolated from deep-frozen (-15 °C) mat samples originally collected on Ross Island, in Victoria Land, and on the McMurdo Ice Shelf were screened for the presence of genes encoding for production of anatoxins, cylindrospermopsin, microcystin/nodularin and saxitoxin. One strain of each of Microcoleus autumnalis and Phormidesmis priestleyi and two strains of Wilmottia murrayi were found to produce microcystin. No toxin production was detected in the other 16 strains representing five species. The four toxin-producing strains were characterised using both morphological and molecular approaches. Phylogenetic analyses using partial 16S rRNA sequences were consistent with the morphological identification of all four strains. They were all found to contain a fragment of the mcyE gene, which is involved in microcystin biosynthesis. ELISA analysis of extracts from cultures of these strains confirmed the presence of low concentrations of microcystin: 0.35 μg/L in M. autumnalis, <0.15 μg/L in P. priestleyi, 1.60 μg/L in W. murrayi strain 1 and 0.9 μg/L in W. murrayi strain 2. This study includes the first report of microcystin synthesis by W. murrayi.
  4. Rahim NAA, Mohd Sidik Merican FM, Radzi R, Omar WMW, Nor SAM, Broady P, et al.
    Trop Life Sci Res, 2023 Sep;34(3):57-94.
    PMID: 37860087 DOI: 10.21315/tlsr2023.34.3.4
    Cyanobacteria are one of the most important groups of photoautotrophic organisms, contributing to carbon and nitrogen fixation in mangroves worldwide. They also play an important role in soil retention and stabilisation and contribute to high plant productivity through their secretion of plant growth-promoting substances. However, their diversity and distribution in Malaysian mangrove ecosystems have yet to be studied in detail, despite Malaysia hosting a significant element of remaining mangroves globally. In a floristic survey conducted in Penang, peninsular Malaysia, 33 morphospecies of periphytic cyanobacteria were identified and described for the first time from a mangrove ecosystem in Malaysia. Sixteen genera, comprising Aphanocapsa, Chroococcus, Chroococcidiopsis, Cyanobacterium, Desmonostoc, Geitlerinema, Leptolyngbya, Lyngbya, Microcystis, Myxosarcina, Oscillatoria, Phormidium, Pseudanabaena, Spirulina, Trichocoleus and Xenococcus, were obtained from field material growing on diverse natural and artificial substrata. Oscillatoriales was the dominant order with Phormidium the dominant genus at nine of the 15 sampling sites examined. Three of the morphospecies, Aphanocapsa cf. concharum, Xenococcus cf. pallidus and Oscillatoria pseudocurviceps, are rare and poorly known morphospecies worldwide. Chroococcus minutus, Phormidium uncinatum, P. amphigranulata, and some species of Oscillatoriales are considered as pollution indicator species. This study provides important baseline information for further investigation of the cyanobacterial microflora present in other mangrove areas around Malaysia. A complete checklist will enhance understanding of their ecological role and the potential for benefits arising from useful secondary metabolites or threats via toxin production to the ecosystem.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links