Displaying all 5 publications

Abstract:
Sort:
  1. Cai R, Yue X, Wang Y, Yang Y, Sun D, Li H, et al.
    J Ethnopharmacol, 2021 Dec 05;281:114563.
    PMID: 34438033 DOI: 10.1016/j.jep.2021.114563
    ETHNOPHARMACOLOGICAL RELEVANCE: The genus Amomum belonging to the family Zingiberaceae, is mainly distributed in tropical regions of Asia and Oceania. Their fruits and seeds are valuable traditional medicine and used extensively, particularly in South China, India, Malaysia, and Vietnam. The genus Amomum has long been used for treating gastric diseases, digestive disorder, cancer, hepatopathy, malaria, etc. AIMS OF THE REVIEW: The main purpose of this review is to provide the available information on the traditional medicinal uses, phytochemistry, and pharmacology aspects of the genus Amomum in order to explore the trends and perspectives for further studies on its non-volatile constituents.

    MATERIALS AND METHODS: The present review collected the literatures published prior to 2020 on the traditional medicinal uses, phytochemistry, and pharmacology of the genus Amomum. The available literatures were extracted from scientific databases, such as Sci-finder, PubMed, Web of Science, Google Scholar, Baidu Scholar, and CNKI, books, and others.

    RESULTS: Herein, we summarize all 166 naturally occurring non-volatile compounds from 16 plants of the genus Amomum reported in 171 references, including flavonoids, terpenoids, diarylheptanoids, coumarins, etc. Triterpenes and flavonoids are the main constituents among these compounds and maybe play an important role in the activities directly or indirectly. As traditional medicine, the plants from the genus Amomum have been usually used in some traditional herbal prescriptions, and pharmacological researches in vitro and in vivo revealed that the extracts possessed significant antioxidant, anti-inflammatory, anti-allergic activities, etc. CONCLUSION: The review systematically summarizes current studies on traditional medicinal uses, phytochemistry, pharmacological activity on the plants from the genus Amomum. To date, the majority of publications still focused on the research of volatile constituents. However, the promising preliminary data of non-volatile constituents indicated the research potential of this genus in phytochemical and pharmacological aspects. Furthermore, the further in-depth investigations on the safety, efficacy, as well as the stereo-chemistry and structure-activity relationships of pure compounds from this genus are essential in the future.

  2. Cai R, Tan CP, Lai OM, Dang Y, Liu A, Choeng LZ, et al.
    Food Chem, 2025 Mar 15;468:142408.
    PMID: 39674013 DOI: 10.1016/j.foodchem.2024.142408
    Casein (CN) is a common allergen that is challenging to avoid in modern foods. The effect of cold argon plasma (CAP) on reducing CN antigenicity was investigated, focusing on alterations in epitope structure and sequence. CAP mainly contains hydroxyl radicals (∙OH). After a 12-min CAP treatment, the result of ELISA demonstrated an 80.46 % reduction in antigenicity. Transmission electron microscopy and electrophoresis revealed that certain CN aggregated, while multispectral analysis indicated that part of CN was fragmented into smaller peptides. The predictive 3D model suggested the disruption of linear epitopes located in the α-helix region might contribute to the reduced allergenicity. The peptide sequences were compared to the linear epitopes predicted by immunoinformatics approaches, revealing some reduction or breakage of key allergic sequences. Meanwhile, amino acids with aromatic side chains and hydrophobic groups were susceptible to CAP-induced modifications. This investigation demonstrated CAP could be beneficial for processing hypoallergenic foods.
  3. Cai R, Tan CP, Lai OM, Dang Y, Liu A, Pan D, et al.
    J Agric Food Chem, 2025 Mar 19;73(11):6890-6902.
    PMID: 40048467 DOI: 10.1021/acs.jafc.5c00868
    Cold argon plasma (CAP) effectively modifies casein (CN) structures by cleaving peptide chains and altering allergenic epitopes. This study assessed the allergenicity of CAP-treated CN in KU812 cells and BALB/c mouse models, supported by a multiomics approach integrating 16S rDNA sequencing, serum metabolomics, and jejunal transcriptomics. CAP treatment reduced CN allergenicity, evidenced by decreased KU812 cell degranulation, alleviated allergic responses in mice, and a Th1/Th2 balance shift toward Th1 dominance. Furthermore, CAP-treated CN restored the gut microbiota equilibrium, increasing the number of beneficial bacteria. Multiomics analysis highlighted its impact on lipid metabolism pathways, with Zbp1 and Hbb-bt identified as potential regulators of allergic responses. These findings underscore the potential of cold argon plasma as an innovative strategy to reduce food allergenicity through multifaceted physiological mechanisms, offering promising therapeutic applications in food allergy management.
  4. Lin X, Hu W, Hii KS, Xiao W, Tan H, Ma L, et al.
    Mol Ecol, 2025 Apr;34(7):e17709.
    PMID: 40026276 DOI: 10.1111/mec.17709
    Climate change has significantly altered the spatiotemporal distribution and phenology of marine organisms, yet the long-term trends and mechanisms driving these changes remain insufficiently understood. In this study, we analysed historical Noctiluca scintillans bloom data from coastal China (1933, 1952, 1981-2023), sea surface temperature (SST) records from the past 40 years, and 509 field samples using Single Molecule Real-Time (SMRT) sequencing (2019-2024). Our results indicate that SST is the primary driver of N. scintillans blooms, exhibiting a nonlinear unimodal correlation. Long-term SST warming has caused a northward shift in bloom locations, aligning with the 21.9°C-22.7°C isotherms, as reflected by the increasing average latitudes of bloom occurrences. Over the past 4 decades, bloom frequency and duration have followed an overall increasing trend, displaying an approximate 10-year cyclical pattern. Ocean warming has also contributed to earlier bloom initiation, extended peak bloom periods and delayed bloom termination, shaping the long-term dynamics of N. scintillans blooms. SMRT sequencing confirmed that local N. scintillans populations persist year-round, serving as latent seed sources that can rapidly bloom when environmental conditions become favourable. These findings provide critical insights into the dynamics of harmful algal blooms in the context of climate change and lay a foundation for future ecological and environmental research.
  5. Shang X, Peng Z, Ye Y, Asan, Zhang X, Chen Y, et al.
    EBioMedicine, 2017 Sep;23:150-159.
    PMID: 28865746 DOI: 10.1016/j.ebiom.2017.08.015
    Hemoglobinopathies are among the most common autosomal-recessive disorders worldwide. A comprehensive next-generation sequencing (NGS) test would greatly facilitate screening and diagnosis of these disorders. An NGS panel targeting the coding regions of hemoglobin genes and four modifier genes was designed. We validated the assay by using 2522 subjects affected with hemoglobinopathies and applied it to carrier testing in a cohort of 10,111 couples who were also screened through traditional methods. In the clinical genotyping analysis of 1182 β-thalassemia subjects, we identified a group of additional variants that can be used for accurate diagnosis. In the molecular screening analysis of the 10,111 couples, we detected 4180 individuals in total who carried 4840 mutant alleles, and identified 186 couples at risk of having affected offspring. 12.1% of the pathogenic or likely pathogenic variants identified by our NGS assay, which were undetectable by traditional methods. Compared with the traditional methods, our assay identified an additional at-risk 35 couples. We describe a comprehensive NGS-based test that offers advantages over the traditional screening/molecular testing methods. To our knowledge, this is among the first large-scale population study to systematically evaluate the application of an NGS technique in carrier screening and molecular diagnosis of hemoglobinopathies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links