Displaying all 6 publications

Abstract:
Sort:
  1. Breast Cancer Association Consortium, Mavaddat N, Dorling L, Carvalho S, Allen J, González-Neira A, et al.
    JAMA Oncol, 2022 Mar 01;8(3):e216744.
    PMID: 35084436 DOI: 10.1001/jamaoncol.2021.6744
    IMPORTANCE: Rare germline genetic variants in several genes are associated with increased breast cancer (BC) risk, but their precise contributions to different disease subtypes are unclear. This information is relevant to guidelines for gene panel testing and risk prediction.

    OBJECTIVE: To characterize tumors associated with BC susceptibility genes in large-scale population- or hospital-based studies.

    DESIGN, SETTING, AND PARTICIPANTS: The multicenter, international case-control analysis of the BRIDGES study included 42 680 patients and 46 387 control participants, comprising women aged 18 to 79 years who were sampled independently of family history from 38 studies. Studies were conducted between 1991 and 2016. Sequencing and analysis took place between 2016 and 2021.

    EXPOSURES: Protein-truncating variants and likely pathogenic missense variants in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53.

    MAIN OUTCOMES AND MEASURES: The intrinsic-like BC subtypes as defined by estrogen receptor, progesterone receptor, and ERBB2 (formerly known as HER2) status, and tumor grade; morphology; size; stage; lymph node involvement; subtype-specific odds ratios (ORs) for carrying protein-truncating variants and pathogenic missense variants in the 9 BC susceptibility genes.

    RESULTS: The mean (SD) ages at interview (control participants) and diagnosis (cases) were 55.1 (11.9) and 55.8 (10.6) years, respectively; all participants were of European or East Asian ethnicity. There was substantial heterogeneity in the distribution of intrinsic subtypes by gene. RAD51C, RAD51D, and BARD1 variants were associated mainly with triple-negative disease (OR, 6.19 [95% CI, 3.17-12.12]; OR, 6.19 [95% CI, 2.99-12.79]; and OR, 10.05 [95% CI, 5.27-19.19], respectively). CHEK2 variants were associated with all subtypes (with ORs ranging from 2.21-3.17) except for triple-negative disease. For ATM variants, the association was strongest for the hormone receptor (HR)+ERBB2- high-grade subtype (OR, 4.99; 95% CI, 3.68-6.76). BRCA1 was associated with increased risk of all subtypes, but the ORs varied widely, being highest for triple-negative disease (OR, 55.32; 95% CI, 40.51-75.55). BRCA2 and PALB2 variants were also associated with triple-negative disease. TP53 variants were most strongly associated with HR+ERBB2+ and HR-ERBB2+ subtypes. Tumors occurring in pathogenic variant carriers were of higher grade. For most genes and subtypes, a decline in ORs was observed with increasing age. Together, the 9 genes were associated with 27.3% of all triple-negative tumors in women 40 years or younger.

    CONCLUSIONS AND RELEVANCE: The results of this case-control study suggest that variants in the 9 BC risk genes differ substantially in their associated pathology but are generally associated with triple-negative and/or high-grade disease. Knowing the age and tumor subtype distributions associated with individual BC genes can potentially aid guidelines for gene panel testing, risk prediction, and variant classification and guide targeted screening strategies.

  2. Grootes I, Keeman R, Blows FM, Milne RL, Giles GG, Swerdlow AJ, et al.
    Eur J Cancer, 2022 Sep;173:178-193.
    PMID: 35933885 DOI: 10.1016/j.ejca.2022.06.011
    BACKGROUND: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).

    METHOD: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.

    RESULTS: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10-6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.

    CONCLUSION: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration.

  3. Morra A, Jung AY, Behrens S, Keeman R, Ahearn TU, Anton-Culver H, et al.
    Cancer Epidemiol Biomarkers Prev, 2021 Apr;30(4):623-642.
    PMID: 33500318 DOI: 10.1158/1055-9965.EPI-20-0924
    BACKGROUND: It is not known whether modifiable lifestyle factors that predict survival after invasive breast cancer differ by subtype.

    METHODS: We analyzed data for 121,435 women diagnosed with breast cancer from 67 studies in the Breast Cancer Association Consortium with 16,890 deaths (8,554 breast cancer specific) over 10 years. Cox regression was used to estimate associations between risk factors and 10-year all-cause mortality and breast cancer-specific mortality overall, by estrogen receptor (ER) status, and by intrinsic-like subtype.

    RESULTS: There was no evidence of heterogeneous associations between risk factors and mortality by subtype (P adj > 0.30). The strongest associations were between all-cause mortality and BMI ≥30 versus 18.5-25 kg/m2 [HR (95% confidence interval (CI), 1.19 (1.06-1.34)]; current versus never smoking [1.37 (1.27-1.47)], high versus low physical activity [0.43 (0.21-0.86)], age ≥30 years versus <20 years at first pregnancy [0.79 (0.72-0.86)]; >0-<5 years versus ≥10 years since last full-term birth [1.31 (1.11-1.55)]; ever versus never use of oral contraceptives [0.91 (0.87-0.96)]; ever versus never use of menopausal hormone therapy, including current estrogen-progestin therapy [0.61 (0.54-0.69)]. Similar associations with breast cancer mortality were weaker; for example, 1.11 (1.02-1.21) for current versus never smoking.

    CONCLUSIONS: We confirm associations between modifiable lifestyle factors and 10-year all-cause mortality. There was no strong evidence that associations differed by ER status or intrinsic-like subtype.

    IMPACT: Given the large dataset and lack of evidence that associations between modifiable risk factors and 10-year mortality differed by subtype, these associations could be cautiously used in prognostication models to inform patient-centered care.

  4. Breast Cancer Association Consortium, Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, et al.
    N Engl J Med, 2021 02 04;384(5):428-439.
    PMID: 33471991 DOI: 10.1056/NEJMoa1913948
    BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

    METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.

    RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.

    CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).

  5. Lin WY, Camp NJ, Ghoussaini M, Beesley J, Michailidou K, Hopper JL, et al.
    Hum Mol Genet, 2015 Jan 01;24(1):285-98.
    PMID: 25168388 DOI: 10.1093/hmg/ddu431
    Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor allele of 1.05 (1.03-1.07), P = 1 × 10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (P = 3 × 10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), P = 1 × 10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.
  6. Fachal L, Aschard H, Beesley J, Barnes DR, Allen J, Kar S, et al.
    Nat Genet, 2020 01;52(1):56-73.
    PMID: 31911677 DOI: 10.1038/s41588-019-0537-1
    Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links