METHODS: An inter-laboratory comparison exercise for the determination of the δ18 O and δ2 H values of nine geothermal fluid samples was conducted among eleven laboratories from eight countries (CeMIEGeo2017). The delta values were measured by dual inlet isotope ratio mass spectrometry (DI-IRMS), continuous flow IRMS (CF-IRMS) and/or laser absorption spectroscopy (LAS). Moreover, five of these laboratories analyzed an additional sample set at least one month after the analysis period of the first set. Statistical evaluation of all the results was performed to obtain the expected isotope ratios of each sample, which were then subsequently used in deep reservoir fluid composition calculations.
RESULTS: The overall analytical precisions of the measurements were ± 0.2‰ for δ18 O values and ± 2.0‰ for δ2 H values within the 95% confidence interval.
CONCLUSIONS: The measured and calculated δ18 O and δ2 H values of water sampled at the weir box, separator and wellhead of geothermal wells suggest the existence of hydrogen and oxygen isotope-exchange equilibrium between the liquid and vapor phases at all sampling points in the well. Thus, both procedures for calculating the isotopic compositions of the deep geothermal reservoir fluid - using either the analytical data of the liquid phase at the weir box together with those of vapor at the separator or the analytical data of liquid and vapor phases at the separator -are equally valid.