Affiliations 

  • 1 Geotermia, Instituto Nacional de Electricidad y Energías Limpias, Reforma 113, Col. Palmira, Cuernavaca, Mor., C.P. 62490, México
  • 2 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Geographie und Geowissenschaften, GeoZentrum Nordbayern, Schlossgarten 5, 91054, Erlangen, Germany
  • 3 Laboratoire GEOPS, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
  • 4 National Isotope Center, GNS Science, TE PU AO, 30 Gracefield Road, PO Box 31 312, Lower Hutt, 5040, New Zealand
  • 5 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa, 153, 90146-I, Palermo, Italy
  • 6 Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
  • 7 Laboratorio de Biogeoquímica de Isótopos Estables, Instituto Andaluz de Ciencias de la Tierra IACT (CSIC-UGR), Avda. de las Palmeras, 4, 18100, Armilla, Granada, Spain
  • 8 Centro de Investigación Científica y Educación Superior de Ensenada, Div. Ciencias de la Tierra, Sistema de Laboratorios Especializados, Carretera Ensenada-Tijuana #3918, zona playitas, C.P. 22860, Ensenada, Baja California, Mexico
  • 9 Instituto de Geofísica, UNAM, Depto. Recursos Naturales, Unidad de Geoquímica de Fluidos Geotérmicos Ext. 135, Universidad Nacional Autónoma de México. Instituto de Geofísica, Circuito Exterior C.U., CDMX, C.P. 04510, México
  • 10 Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, CEP 22451*900, Brazil
  • 11 Waste and Environmental Technology Division, Environmental Tracer Application Group (ETAG), Block 29, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Malaysia
Rapid Commun Mass Spectrom, 2018 Oct 30;32(20):1799-1810.
PMID: 30007043 DOI: 10.1002/rcm.8233

Abstract

RATIONALE: Knowledge of the accuracy and precision for oxygen (δ18 O values) and hydrogen (δ2 H values) stable isotope analyses of geothermal fluid samples is important to understand geothermal reservoir processes, such as partial boiling-condensation and encroachment of cold and reinjected waters. The challenging aspects of the analytical techniques for this specific matrix include memory effects and higher scatter of delta values with increasing total dissolved solids (TDS) concentrations, deterioration of Pt-catalysts by dissolved/gaseous H2 S for hydrogen isotope equilibration measurements and isotope salt effects that offset isotope ratios determined by gas equilibration techniques.

METHODS: An inter-laboratory comparison exercise for the determination of the δ18 O and δ2 H values of nine geothermal fluid samples was conducted among eleven laboratories from eight countries (CeMIEGeo2017). The delta values were measured by dual inlet isotope ratio mass spectrometry (DI-IRMS), continuous flow IRMS (CF-IRMS) and/or laser absorption spectroscopy (LAS). Moreover, five of these laboratories analyzed an additional sample set at least one month after the analysis period of the first set. Statistical evaluation of all the results was performed to obtain the expected isotope ratios of each sample, which were then subsequently used in deep reservoir fluid composition calculations.

RESULTS: The overall analytical precisions of the measurements were ± 0.2‰ for δ18 O values and ± 2.0‰ for δ2 H values within the 95% confidence interval.

CONCLUSIONS: The measured and calculated δ18 O and δ2 H values of water sampled at the weir box, separator and wellhead of geothermal wells suggest the existence of hydrogen and oxygen isotope-exchange equilibrium between the liquid and vapor phases at all sampling points in the well. Thus, both procedures for calculating the isotopic compositions of the deep geothermal reservoir fluid - using either the analytical data of the liquid phase at the weir box together with those of vapor at the separator or the analytical data of liquid and vapor phases at the separator -are equally valid.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.