Displaying all 5 publications

Abstract:
Sort:
  1. Ilina EN, Borovskaya AD, Serebryakova MV, Chelysheva VV, Momynaliev KT, Maier T, et al.
    Rapid Commun Mass Spectrom, 2010 Feb;24(3):328-34.
    PMID: 20049887 DOI: 10.1002/rcm.4394
    The characteristics of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based investigation of extremely variable bacteria such as Helicobacter pylori were studied. H. pylori possesses a very high natural variability. Accurate tools for species identification and epidemiological characterization could help the scientific community to better understand the transmission pathways and virulence mechanisms of these bacteria. Seventeen clinical as well as two laboratory strains of H. pylori were analyzed by the MALDI Biotyper method for rapid species identification. Mass spectra collected were found containing 7-13 significant peaks per sample, and only six protein signals were identical for more than half of the strains. Four of them could be assigned to ribosomal proteins RL32, RL33, RL34, and RL36. The reproducible peak with m/z 6948 was identified as a histidine-rich metal-binding polypeptide by tandem mass spectrometry (MS/MS). In spite of the evident protein heterogeneity of H. pylori the mass spectra collected for a particular strain under several cultivations were highly reproducible. Moreover, all clinical strains were perfectly identified as H. pylori species through comparative analysis using the MALDI Biotyper software (Bruker Daltonics, Germany) by pattern matching against a database containing mass spectra from different microbial strains (n = 3287) including H. pylori 26695 and J99. The results of this study allow the conclusion that the MALDI-TOF direct bacterial profiling is suited for H. pylori identification and could be supported by mass spectra fragmentation of the observed polypeptide if necessary.
  2. Verma MP, van Geldern R, Barth JAC, Monvoisin G, Rogers K, Grassa F, et al.
    Rapid Commun Mass Spectrom, 2018 Oct 30;32(20):1799-1810.
    PMID: 30007043 DOI: 10.1002/rcm.8233
    RATIONALE: Knowledge of the accuracy and precision for oxygen (δ18 O values) and hydrogen (δ2 H values) stable isotope analyses of geothermal fluid samples is important to understand geothermal reservoir processes, such as partial boiling-condensation and encroachment of cold and reinjected waters. The challenging aspects of the analytical techniques for this specific matrix include memory effects and higher scatter of delta values with increasing total dissolved solids (TDS) concentrations, deterioration of Pt-catalysts by dissolved/gaseous H2 S for hydrogen isotope equilibration measurements and isotope salt effects that offset isotope ratios determined by gas equilibration techniques.

    METHODS: An inter-laboratory comparison exercise for the determination of the δ18 O and δ2 H values of nine geothermal fluid samples was conducted among eleven laboratories from eight countries (CeMIEGeo2017). The delta values were measured by dual inlet isotope ratio mass spectrometry (DI-IRMS), continuous flow IRMS (CF-IRMS) and/or laser absorption spectroscopy (LAS). Moreover, five of these laboratories analyzed an additional sample set at least one month after the analysis period of the first set. Statistical evaluation of all the results was performed to obtain the expected isotope ratios of each sample, which were then subsequently used in deep reservoir fluid composition calculations.

    RESULTS: The overall analytical precisions of the measurements were ± 0.2‰ for δ18 O values and ± 2.0‰ for δ2 H values within the 95% confidence interval.

    CONCLUSIONS: The measured and calculated δ18 O and δ2 H values of water sampled at the weir box, separator and wellhead of geothermal wells suggest the existence of hydrogen and oxygen isotope-exchange equilibrium between the liquid and vapor phases at all sampling points in the well. Thus, both procedures for calculating the isotopic compositions of the deep geothermal reservoir fluid - using either the analytical data of the liquid phase at the weir box together with those of vapor at the separator or the analytical data of liquid and vapor phases at the separator -are equally valid.

  3. Briggs MT, Ho YY, Kaur G, Oehler MK, Everest-Dass AV, Packer NH, et al.
    Rapid Commun Mass Spectrom, 2017 May 30;31(10):825-841.
    PMID: 28271569 DOI: 10.1002/rcm.7845
    RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of the proteome of a tissue has been an established technique for the past decade. In the last few years, MALDI-MSI of the N-glycome has emerged as a novel MALDI-MSI technique. To assess the accuracy and clinical significance of the N-linked glycan spatial distribution, we have developed a method that utilises MALDI-MSI followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) in order to assign glycan structures to the differentiating MALDI-MSI glycan masses released from the tissue glycoproteins.

    METHODS AND RESULTS: Our workflow presents a comprehensive list of instructions on how to (i) apply MALDI-MSI to spatially map the N-glycome across formalin-fixed paraffin-embedded (FFPE) clinical samples, (ii) structurally characterise N-glycans extracted from consecutive FFPE tissue sections by LC/MS/MS, and (iii) match relevant N-glycan masses from MALDI-MSI with confirmed N-glycan structures determined by LC/MS/MS.

    CONCLUSIONS: Our protocol provides groups that are new to this technique with instructions how to establish N-glycan MALDI-MSI in their laboratory. Furthermore, the method assigns N-glycan structural detail to the masses obtained in the MALDI-MS image. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Seddighi Chaharborj S, Phang PS, Sadat Kiai SM, Majid ZA, Abu Bakar MR, Fudziah I
    Rapid Commun Mass Spectrom, 2012 Jun 30;26(12):1481-7.
    PMID: 22592992 DOI: 10.1002/rcm.6232
    The capabilities and performances of a quadrupole ion trap under damping force based on collisional cooling is of particular importance in high-resolution mass spectrometry and should be analyzed by Mathieu's differential solutions. These solutions describe the stability and instability of the ion's trajectories confined in quadrupole devices. One of the methods for solving Mathieu's differential equation is a two-point one block method. In this case, Mathieu's stability diagram, trapping parameters a(z) and q(z) and the secular frequency of the ion motion w(z), can be derived in a precise manner. The two-point one block method (TPOBM) of Adams Moulton type is presented to study these parameters with and without the effect of damping force and compared to the 5th-order Runge-Kutta method (RKM5). The simulated results show that the TPOBM is more accurate and 10 times faster than the RKM5. The physical properties of the confined ions in the r and z axes are illustrated and the fractional mass resolutions m/Δm of the confined ions in the first stability region were analyzed by the RKM5 and the TPOBM.
  5. Hamzah N, Kjellberg M, Vanninen P
    Rapid Commun Mass Spectrom, 2023 May 15;37(9):e9495.
    PMID: 36799074 DOI: 10.1002/rcm.9495
    RATIONALE: This paper describes an in vitro study designed to identify metabolic biomarkers resulting from the conjugation of nitrogen mustards (NMs) with glutathione (GSH). The method developed is essential in providing evidence in the event of NM exposure in biomedical samples.

    METHODS: The mass spectral characterization of the proposed NMs-GSH conjugates was performed with liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). The final reaction mixtures were analysed in positive electrospray ionisation (ESI) at different incubation times.

    RESULTS: This study identified three types of conjugates in addition to ethanolamines, the hydrolysis products of NMs. Monoglutathionyl, diglutathionyl and phosphorylated conjugates were produced for each of the NMs, bis(2-chloroethyl)ethylamine (HN1), bis(2-chloroethyl)methylamine (HN2) and tris(2-chloroethyl)amine (HN3). The monoglutathionyl conjugates consisted of HN1-GSH, HN2-GSH and HN3-GSH. The spontaneous and primary conjugates of diglutathionyl were HN1-GSH2, HN2-GSH2 and HN3-GSH2. These included phosphorylated conjugates, namely HN1-GSH-PO4 , HN2-GSH-PO4 and HN3-GSH-PO4 , as might have formed due to hydrolysis in phosphate buffer.

    CONCLUSIONS: The mass spectral data of all conjugates formed in the presence of all NMs and GSH are reported in this study. These GSH metabolites can be used to confirm NMs toxicity in biological samples such as urine.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links