Methods: Consecutive patients with PCD were identified from the HKIBDR, and disease characteristics, treatments, and outcomes were analysed. The risks for medical and surgical therapies were assessed using Kaplan-Meier analysis.
Results: Among 981 patients with CD with 10530 patient-years of follow-up, 283 [28.8%] had perianal involvement, of which 120 [42.4%] were as first presentation. The mean age at diagnosis of PCD was 29.1 years, and 78.8% were male. The median follow-up duration was 106 months (interquartile range [IQR]: 65-161 months]. Perianal fistula [84.8%] and perianal abscess [52.7%] were the two commonest forms. Male, younger age at diagnosis of CD, and penetrating phenotypes were associated with development of PCD in multivariate analysis. Of 242 patients with fistulizing PCD, 70 [29.2%] required ≥5 courses of antibiotics, and 98 [40.5%] had ≥2 surgical procedures. Nine patients required defunctioning surgery and 4 required proctectomy. Eighty-four patients [34.7%] received biologics. Cumulative probabilities for use of biologics were 4.7%, 5.8%, and 8.6% at 12 months, 36 months, and 96 months, respectively, while the probabilities for surgery were 67.2%, 71.6%, and 77.7%, respectively. Five mortalities were recorded, including 2 cases of anal cancer, 2 CD-related complications, and one case of pneumonia.
Conclusion: Over 40% of CD patients presented with perianal disease at diagnosis. Patients with PCD had poor outcome, with young age of onset, multiple antibiotic use, and repeated surgery.
METHODS: 28 experts from 11 countries reviewed the evidence and modified the statements using the Delphi method, with consensus level predefined as ≥80% of agreement on each statement. The Grading of Recommendation Assessment, Development and Evaluation (GRADE) approach was followed.
RESULTS: Consensus was reached in 26 statements. At an individual level, eradication of H. pylori reduces the risk of GC in asymptomatic subjects and is recommended unless there are competing considerations. In cohorts of vulnerable subjects (eg, first-degree relatives of patients with GC), a screen-and-treat strategy is also beneficial. H. pylori eradication in patients with early GC after curative endoscopic resection reduces the risk of metachronous cancer and calls for a re-examination on the hypothesis of 'the point of no return'. At the general population level, the strategy of screen-and-treat for H. pylori infection is most cost-effective in young adults in regions with a high incidence of GC and is recommended preferably before the development of atrophic gastritis and intestinal metaplasia. However, such a strategy may still be effective in people aged over 50, and may be integrated or included into national healthcare priorities, such as colorectal cancer screening programmes, to optimise the resources. Reliable locally effective regimens based on the principles of antibiotic stewardship are recommended. Subjects at higher risk of GC, such as those with advanced gastric atrophy or intestinal metaplasia, should receive surveillance endoscopy after eradication of H. pylori.
CONCLUSION: Evidence supports the proposal that eradication therapy should be offered to all individuals infected with H. pylori. Vulnerable subjects should be tested, and treated if the test is positive. Mass screening and eradication of H. pylori should be considered in populations at higher risk of GC.
METHODS: We performed a prospective, population-based study of IBD incidence in predefined catchment areas, collecting data for 1 year, starting on April 1, 2011. New cases were ascertained from multiple overlapping sources and entered into a Web-based database. Cases were confirmed using standard criteria. Local endoscopy, pathology, and pharmacy records were searched to ensure completeness of case capture.
RESULTS: We identified 419 new cases of IBD (232 of ulcerative colitis [UC], 166 of Crohn's disease [CD], and 21 IBD-undetermined). The crude annual overall incidence values per 100,000 individuals were 1.37 for IBD in Asia (95% confidence interval: 1.25-1.51; 0.76 for UC, 0.54 for CD, and 0.07 for IBD-undetermined) and 23.67 in Australia (95% confidence interval: 18.46-29.85; 7.33 for UC, 14.00 for CD, and 2.33 for IBD-undetermined). China had the highest incidence of IBD in Asia (3.44 per 100,000 individuals). The ratios of UC to CD were 2.0 in Asia and 0.5 in Australia. Median time from symptom onset to diagnosis was 5.5 months (interquartile range, 1.4-15 months). Complicated CD (stricturing, penetrating, or perianal disease) was more common in Asia than Australia (52% vs 24%; P = .001), and a family history of IBD was less common in Asia (3% vs 17%; P < .001).
CONCLUSIONS: We performed a large-scale population-based study and found that although the incidence of IBD varies throughout Asia, it is still lower than in the West. IBD can be as severe or more severe in Asia than in the West. The emergence of IBD in Asia will result in the need for specific health care resources, and offers a unique opportunity to study etiologic factors in developing nations.
METHODS: Newly diagnosed IBD cases between 2011 and 2013 from 13 countries or regions in Asia-Pacific were included. Incidence was calculated with 95% confidence interval (CI) and pooled using random-effects model. Meta-regression analysis was used to assess incidence rates and their association with population density, latitude, and longitude.
RESULTS: We identified 1175 ulcerative colitis (UC), 656 Crohn's disease (CD), and 37 IBD undetermined (IBD-U). Mean annual IBD incidence per 100 000 was 1.50 (95% CI: 1.43-1.57). India (9.31; 95% CI: 8.38-10.31) and China (3.64; 95% CI, 2.97-4.42) had the highest IBD incidence in Asia. Incidence of overall IBD (incidence rate ratio [IRR]: 2.19; 95% CI: 1.01-4.76]) and CD (IRR: 3.28; 95% CI: 1.83-9.12) was higher across 19 areas of Asia with a higher population density. In China, incidence of IBD (IRR: 2.37; 95% CI: 1.10-5.16) and UC (IRR: 2.63; 95% CI: 1.2-5.8) was positively associated with gross domestic product. A south-to-north disease gradient (IRR: 0.94; 95% CI: 0.91-0.98) was observed for IBD incidence and a west-to-east gradient (IRR: 1.14; 95% CI: 1.05-1.24) was observed for CD incidence in China. This study received IRB approval.
CONCLUSIONS: Regions in Asia with a high population density had a higher CD and UC incidence. Coastal areas within China had higher IBD incidence. With increasing urbanization and a shift from rural areas to cities, disease incidence may continue to climb in Asia.