Displaying all 5 publications

Abstract:
Sort:
  1. Chang TC, Cheng HH
    Med J Malaysia, 1994 Dec;49(4):351-4.
    PMID: 7545778
    The use of maternal age alone to identify pregnant mothers at risk of a fetus with Down's syndrome has recently been supplemented by maternal serum screening using biochemical markers such as alpha-protein, human chorionic gonadotrophin and oestriol. These tests have been reported to increase the sensitivity of antenatal detection of such fetuses from 35% to 67% with a false positive rate of 5%. However, these maternal serum markers may be affected by maternal weight, the smoking history of mothers and diabetes mellitus. Furthermore, such sensitivities are achieved only when gestational age is assessed accurately by ultrasound. Many further studies need to be carried out before the introduction of maternal serum screening into routine obstetric practice in Singapore. These include studies on the incidence of Down's syndrome in the local population, studies on the distribution of these serum markers in the second trimester of pregnancy, sensitivities and positive predictive values of such a test in the local population as well as the socio-economic implications of implementing such a screening test in the local obstetric population.
  2. Chowdhury RH, Reaz MB, Ali MA, Bakar AA, Chellappan K, Chang TG
    Sensors (Basel), 2013;13(9):12431-66.
    PMID: 24048337 DOI: 10.3390/s130912431
    Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.
  3. Chang SH, Hsieh CH, Weng YM, Hsieh MS, Goh ZNL, Chen HY, et al.
    Biomed Res Int, 2018;2018:6983568.
    PMID: 30327779 DOI: 10.1155/2018/6983568
    Background: Renal abscess is a relatively uncommon yet debilitating and potentially fatal disease. There is no clearly defined, objective risk stratification tool available for emergency physicians' and surgeons' use in the emergency department (ED) to quickly determine the appropriate management strategy for these patients, despite early intervention having a beneficial impact on survival outcomes.

    Objective: This case control study evaluates the performance of Mortality in Emergency Department Sepsis Score (MEDS), Modified Early Warning Score (MEWS), Rapid Emergency Medicine Score (REMS), and Rapid Acute Physiology Score (RAPS) in predicting risk of mortality in ED adult patients with renal abscess. This will help emergency physicians, surgeons, and intensivists expedite the time-sensitive decision-making process.

    Methods: Data from 152 adult patients admitted to the EDs of two training and research hospitals who had undergone a contrast-enhanced computed tomography scan of the abdomen and was diagnosed with renal abscess from January 2011 to December 2015 were analyzed, with the corresponding MEDS, MEWS, REMS, RAPS, and mortality risks calculated. Ability to predict patient mortality was assessed via receiver operating curve analysis and calibration analysis.

    Results: MEDS was found to be the best performing physiologic scoring system, with sensitivity, specificity, and accuracy of 87.50%, 88.89%, and 88.82%, respectively. Area under receiver operating characteristic curve (AUROC) value was 0.9440, and negative predictive value was 99.22% with a cutoff of 9 points.

    Conclusion: Our study is the largest of its kind in examining ED patients with renal abscess. MEDS has been demonstrated to be superior to MEWS, REMS, and RAPS in predicting mortality for this patient population. We recommend its use for evaluation of disease severity and risk stratification in these patients, to expedite identification of critically ill patients requiring urgent intervention.

  4. Zhou X, Yan Z, Hou J, Zhang L, Chen Z, Gao C, et al.
    Oncogene, 2024 Feb;43(7):495-510.
    PMID: 38168654 DOI: 10.1038/s41388-023-02923-z
    Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.
  5. Xiao Y, Sloan J, Hepworth C, Fradera-Soler M, Mathers A, Thorley R, et al.
    New Phytol, 2023 Jan;237(2):441-453.
    PMID: 36271620 DOI: 10.1111/nph.18564
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2 . We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links