Displaying all 5 publications

Abstract:
Sort:
  1. Ling CX, Chang YP
    J Food Sci Technol, 2017 Jun;54(7):2041-2049.
    PMID: 28720961 DOI: 10.1007/s13197-017-2641-5
    Guava seeds are produced as a waste product by the guava processing industry. Their high carbohydrate contents may suit the carbohydrate needs of the feed sector but their high dietary fiber content limits their feed value. The feed values of fruit seeds can be improved through germination, which involves the mobilization of nutrients through seed enzymes and alters the seed carbohydrate composition. The changes of selected carbohydrates in guava (Psidium guajava L.) seeds brought by germination to those in red bean (Vigna angularis) and winter wheat (Triticum aestivum L.) were compared. The contents of soluble carbohydrates, digestible starch, resistant starch and cellulose in the seeds were determined. The radial diffusion method was used to detect carbohydrate-degrading enzymes in the seed extracts. Guava seeds were rich in cellulose (402.2 mg/g), which decreased progressively during germination, probably through the action of cellulase. Winter wheat contained the highest starch content (412.2 mg/g) and also distinct quantities of α-amylase and cellulase. The starch contents of all the seeds decreased, but the soluble carbohydrate contents in red beans and guava seeds increased significantly by the end of germination, suggesting the transient oversupply of reserve metabolites. The content of hydrolyzed polysaccharides increased in the germinated seeds with detectable amounts of cellulose-degrading enzymes present, indicating improved value as feed. Further research is warranted to explore the potential of guava seeds as a source of low-cost animal feed supplements.
  2. Chang YP, Tan MP, Lok WL, Pakianathan S, Supramaniam Y
    Plant Foods Hum Nutr, 2014 Mar;69(1):43-9.
    PMID: 24292972 DOI: 10.1007/s11130-013-0396-3
    The guava processing industry in Malaysia produces by-products in the form of seed core and peel. These by-products can be regarded as underused resources but there are concerns about their composition that prevent their use in the food and feed industries. This study aims to analyze the respective effects of heat treatments (boiling or autoclaving) and germination periods on the nutritional composition and phytochemical content of guava seeds. The guava seeds were found to contain 618, 78, 72, and 5 mg/g dry weight total dietary fiber, fat, protein, and ash, respectively. The tannin and saponin contents, but not the phytic acid content, were below the respective anti-nutritional thresholds. The heat treatments did not affect the total dietary fiber and ash contents but reduced all other chemical components to different extents (15-91%). Boiling did not reduce the phytic acid content substantially but autoclaving caused a reduction of 91% to a level below the anti-nutritional threshold. Germination for 14 days caused a significant reduction in nutrient contents in the range of 16-79%. Germination also reduced the phytic acid content by 90% in the seed but did not significantly affect the saponin content. Thus, guava seed can be treated thermally or germinated to manipulate its chemical composition to enable its use in the food and feed industries.
  3. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

  4. Liang JL, Yeow CC, Teo KC, Gnanaraj C, Chang YP
    J Food Sci Technol, 2019 Oct;56(10):4696-4704.
    PMID: 31686701 DOI: 10.1007/s13197-019-03912-5
    The capsicum seed core and cabbage outer leaves are common wastes generated in the vegetable processing industry. We explored the in vitro health-promoting activity of these waste products for valorization. Freeze-dried and pulverized cabbage wastes had a high bile acid binding capacity and the capsicum wastes inhibited glucose dialysis more effectively. Methanolic extracts prepared with conventional solvent extraction and ultrasound-assisted extraction were analyzed to determine their 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, in vitro α-amylase inhibitory, in vitro lipase inhibitory, and prebiotic activity. Crude extracts of cabbage and capsicum wastes were screened using GC-MS analysis. The cabbage waste extracts showed high antioxidant activities but did not inhibit α-amylase. The capsicum waste extracts inhibited both lipase and α-amylase activities and supported the growth of the probiotic bacterium, Lactobacilli brevis. Volatile compounds of the vegetables consisted mainly of phenols and fatty acid esters. In all assays except the α-amylase inhibition assay, the extracts prepared with ultrasound-assisted solvent extraction showed higher activity than those prepared using the conventional method. The capsicum seed core and cabbage outer leaves are potential sources of phytochemicals and antioxidant fibers. Capsicum waste extract supported probiotic bacterial growth without a lag phase. These waste products may be processed into high-value functional ingredients.
  5. Chang YP, Yang CJ, Hu KF, Chao AC, Chang YH, Hsieh KP, et al.
    Neuropsychiatr Dis Treat, 2016;12:1037-46.
    PMID: 27175081 DOI: 10.2147/NDT.S99365
    Pneumonia is the leading cause of death in patients with Parkinson's disease (PD). However, few studies have been performed to explore the risk factors for pneumonia development in patients with PD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links