Displaying all 2 publications

Abstract:
Sort:
  1. Changkakoti L, Rajabalaya R, David SR, Balaraman AK, Sivasubramanian H, Mukherjee AK, et al.
    Curr Neuropharmacol, 2024 Nov 21.
    PMID: 39572918 DOI: 10.2174/011570159X327677240902105443
    Neurodegenerative diseases (NDDs) are a multifaceted and heterogeneous group of complex diseases. Unfortunately, a cure for these conditions has yet to be found, but there are ways to reduce the risk of developing them. Studies have shown that specific vitamins regulate the brain molecules and signaling pathways, which may help prevent degeneration. This review focuses on examining the role of vitamins in preventing five significant types of neurodegenerative diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS). This review also highlights promising and controversial findings about the potential impact of vitamins on this group of diseases. Several developed countries standardize daily dietary vitamin intake to meet nutrient requirements, improve health, and prevent chronic diseases like NDDs. However, more research is necessary to gain a more comprehensive understanding of their therapeutic benefits, including studies exploring different drug-dose paradigms, diverse humanized animal models, and clinical trials conducted in various locations.
  2. Changkakoti L, Das JM, Borah R, Rajabalaya R, David SR, Balaraman AK, et al.
    PMID: 37937564 DOI: 10.2174/0118715303262824231024104849
    According to the World Health Organization (WHO), diabetes has been increasing steadily over the past few decades. In developing countries, it is the cause of increased morbidity and mortality. Diabetes and its complications are associated with education, occupation, and income across all levels of socioeconomic status. Factors, such as hyperglycemia, social ignorance, lack of proper health knowledge, and late access to medical care, can worsen diabetic complications. Amongst the complications, neuropathic pain and inflammation are considered the most common causes of morbidity for common populations. This review is focused on exploring protein kinase C (PKC)-mediated TGF-β regulation in diabetic complications with particular emphasis on allodynia. The role of PKC-triggered TGF-β in diabetic neuropathy is not well explored. This review will provide a better understanding of the PKC-mediated TGF-β regulation in diabetic neuropathy with several schematic illustrations. Neuroinflammation and associated hyperalgesia and allodynia during microvascular complications in diabetes are scientifically illustrated in this review. It is hoped that this review will facilitate biomedical scientists to better understand the etiology and target drugs effectively to manage diabetes and diabetic neuropathy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links